ООО "ПРОПИОНИКС"
ИННОВАЦИОННЫЕ ПИЩЕВЫЕ ТЕХНОЛОГИИ +7(966)348-80-35; +7(915)001-93-94
БИОТЕХНОЛОГИЯ - производственное использование биологических агентов (в частности микроорганизмов) для получения полезных продуктов и осуществления целевых превращений. В биотехнологических процессах также используются такие биологические макромолекулы как белки - чаще всего ферменты, рибонуклеиновые кислоты.
Биотехнология – междисциплинарная область знания, и в XXI в. она займет ключевые позиции в цикле естественных наук. Исходя из определения, данного выше, современным биотехнологам необходимо хорошо знать не только биологию, но и молекулярную генетику и цитологию, генетику и молекулярную медицину, вирусологию, микробиологию и биохимию, технологию производства ферментных препаратов и других биотехнологических производственных процессов. С биоинформатикой и системной биологией тесно связаны компьютерные и информационные технологии. Поэтому неудивительно, что до сих пор не существует кратких и содержательных учебных пособий по биотехнологии, которые охватывали бы эту дисциплину во всем ее многообразии. В дополнительном материале в кратком описательном перечне указаны некоторые популярные направления (+ необходимые знания) из большого многообразия задач научно-прикладной дисциплины XXI века.
Основным направлением компании ООО "Пропионикс" является пищевая биотехнология
Биотехнология пищевая (пищевая биоиндустрия) - раздел биотехнологии, занимающийся разработкой теории и практики создания пищевых продуктов общего, лечебно-профилактического назначения и специальной ориентации.
История биотехнологии. Использование в промышленном производстве микроорганизмов или их ферментов, обеспечивающих технологический процесс, известно издревле, однако систематизированные научные исследования позволили существенно расширить арсенал методов и средств биотехнологии. Люди выступали в роли биотехнологов с незапамятных времен: занимались хлебопечением и сыроделием, производили другие кисломолочные продукты и варили пиво, используя различные микроорганизмы даже не подозревая об их существовании. Сам термин "биотехнология" появился в нашем языке недавно, ранее его заменяли словами "промышленная микробиология" или "техническая биохимия". Впервые термин «биотехнология» применил венгерский инженер Карл Эреки в 1917 году.
По видимому, древнейшим биотехнологическим процессом было брожение. Об этом свидетельствует описание способа приготовления пива, обнаруженное на дощечке, найденной при раскопках Вавилона, которая датируется 6-м тысячелетием до н. э. Известно, что в третьем тысячелетии до н. э. шумеры могли изготовлять уже около двадцати сортов пива. Не менее древними являются и такие процессы, как виноделие, получение кисломолочных продуктов и выпекание хлеба. Иными словами, биотехнология — это наука о методах и технологиях производства различных веществ и продуктов с использованием природных биологических объектов и процессов. И это есть ее традиционное, классическое понимание…
Несведущий в микробиологии видит практическое значение микроорганизмов в первую очередь во вреде, который они причиняют человеку, животным и растениям. Этими болезнетворными (патогенными) микроорганизмами и их специфическими особенностями занимаются такие науки, как медицинская и ветеринарная микробиология, а также фитопатология. Хотя микроорганизмы и в других сферах природы, и в промышленности выступают иногда в роли вредителей, их роль как полезных организмов существенно преобладает. Они уже давно завоевали себе прочное место в домашнем хозяйстве, а в промышленности они совершенно необходимы. Их используют в самых различных отраслях от первичной переработки сельскохозяйственных продуктов до катализа сложнейших этапов химических синтезов.
Классические микробиологические производства: Как было уже отмечено выше, на примере пивоварения и виноделия с использованием различных дрожжей, выпечки хлеба и приготовления молочных продуктов с помощью молочнокислых бактерий, а также получения пищевого уксуса при участии уксуснокислых бактерий становится очевидным, что микроорганизмы относятся к старейшим культурным «растениям».
В Японии и Индонезии соевые бобы издавна перерабатываются с помощью мицелиальных грибов, дрожжей и молочнокислых бактерий. Если не считать получения этанола, в промышленном производстве индивидуальных веществ микроорганизмы начали использовать лишь в последние шестьдесят лет.
Уже в период первой мировой войны с помощью управляемого дрожжевого брожения получали глицерин. Молочная и лимонная кислоты, в больших количествах необходимые для пищевой промышленности, производятся с помощью молочнокислых бактерий и гриба Aspergillus niger соответственно. Из дешевых, богатых углеводами отходов путем брожения, осуществляемого клостридиями и бациллами, можно получать ацетон, бутанол, 2-пропанол, бутандиол и другие важные химические соединения.
Новые микробные производства
Классические виды брожения дополняются новыми применениями микробов в химических производствах. Из грибов получают каротиноиды и стероиды. Когда выяснилось, что Corynebacterium glutamicum из сахара и соли аммония с большим выходом синтезирует глутаминовую кислоту, были выделены бактерии и разработаны методы, с помощью которых можно в больших масштабах производить многие аминокислоты, нуклеотиды и реактивы для биохимических исследований.
Микроорганизмы используются химиками в качестве катализаторов для осуществления некоторых этапов в длинной цепи реакций синтеза; микробиологические процессы по своей химической специфичности и по выходу продукта превосходят химические реакции; ферменты, применяемые в промышленности, - амилазы для гидролиза крахмала, протеиназы для обработки кож, пектиназы для осветления фруктовых соков и другие - получают также из культур микроорганизмов. Все это и многое другое показывает огромный потенциал т.н. прикладной микробиологии и биохимии.
Применительно к профилю компании ООО "Пропионикс" следует отметить два важных направления биотехнологии: пищевую и сельскохозяйственную. Данные направления хорошо раскрыты в комплексной программе развития биотехнологий в Российской Федерации на период до 2020 года (утв. Правительством РФ от 24 апреля 2012 г. N 1853п-П8)
Стратегической целью Программы является выход России на лидирующие позиции в области разработки биотехнологий, в том числе по отдельным направлениям биомедицины, агробиотехнологий, промышленной биотехнологии и биоэнергетики, и создание глобально конкурентоспособного сектора биоэкономики, который наряду с наноиндустрией и информационными технологиями должен стать основой модернизации и построения постиндустриальной экономики.
Долгосрочной целью реализации Программы является выход в 2020 году на объем биоэкономики в России в размере около 1% ВВП и в 2030 году - не менее 3% ВВП
В программе выделены основные приоритетные направления развития биотехнологий в России. К ним относятся:
Современная пищевая биотехнология представляет собой индустрию пищевых ингредиентов - вспомогательных технологических добавок, вводимых в пищевые продукты в процессе их изготовления для повышения их полезных свойств.
Огромное количество пищевых ингредиентов в настоящее время импортируется, в связи с чем организация их производства в России является актуальной, социально востребованной задачей.
6.1. "Пищевой белок"
Человек традиционно получает белки, жиры и углеводы (основные компоненты пищи) из животных и растительных источников. Уже сегодня эти источники не покрывают все увеличивающиеся потребности человечества.
Современные методы биотехнологий в сочетании с применением ультра- и нанофильтрационных систем делают экономически обоснованным извлечение пищевого белка из широкого класса сырьевых продуктов и отходов пищевой промышленности. Таким образом, комплекс мероприятий направлен на распространение технологий, превращающих малоценные отходы в белковые продукты и компоненты с высокой добавленной стоимостью.
6.2. "Ферментные препараты"
Ферменты, применяемые в пищевых производствах, являются продуктами с высокой добавленной стоимостью, в России практически не производятся. Развитие данного направления позволит создать компактный по масштабам, но высокоэффективный сектор, являющийся с одной стороны базой развития всех направлений пищевой отрасли, направленных на глубокую переработку сырья, с другой стороны, производство пищевых ферментов обладает высоким экспортным потенциалом.
6.3. "Пребиотики, пробиотики, синбиотики"
Развитие производства и пищевого инжиниринга продуктов данной группы является необходимым элементом для формирования в России рынка здорового питания. Задачей данного комплекса мероприятий является создание пробиотических продуктов, расширение исследований и практики внедрения в ассортимент предприятий новых продуктов и комплексных решений.
6.4. "Функциональные пищевые продукты, включая лечебные, профилактические и детские"
К функционально пищевым продуктам относят пищевые продукты систематического употребления, сохраняющие и улучшающие здоровье и снижающие риск развития заболеваний благодаря наличию в их составе функциональных ингредиентов. Они не являются лекарственными средствами, но препятствуют возникновению отдельных болезней, способствуют росту и развитию детей, тормозят старение организма. В соответствии с мировой практикой продукт считается функциональным, если регламентируемое содержание микронутриентов в нем достаточно для удовлетворения (при обычном уровне потребления) 25 - 50% от среднесуточной потребности в этих компонентах. Развитие направления является важной социальной задачей, снижающей нагрузку на сектор медицины и социально-экономический ущерб от болезней.
6.5. "Пищевые ингредиенты, включая витамины и функциональные смеси"
Пищевые ингредиенты используются для повышения питательной ценности, удлинения срока хранения, изменения консистенции и усиления вкуса и аромата продуктов. Используемые производителями пищевые ингредиенты, как правило, имеют растительное или бактериальное происхождение. Многие аминокислотные добавки, усилители вкуса и витамины, добавляемые в пищевые продукты, производятся с помощью бактериальной ферментации. В результате реализации комплекса мероприятий биотехнология должна обеспечить производителям пищевых продуктов возможность синтеза большого количества пищевых добавок, которые в настоящее время слишком дороги либо малодоступны из-за ограниченности природных источников этих соединений.
6.6. "Глубокая переработка пищевого сырья"
Биотехнология предоставляет множество возможностей усовершенствования методов переработки сырья в конечные продукты: натуральные ароматизаторы и красители; новые технологические добавки, в том числе ферменты и эмульгаторы; заквасочные культуры; новые средства для утилизации отходов; экологически чистые производственные процессы; новые средства для обеспечения сохранения безопасности продуктов в процессе изготовления.
Современные технологии глубокой переработки пищевого сырья строятся на принципах безотходного производства: продукты переработки либо возвращаются в производственный цикл, либо используются в других отраслях (прежде всего в производстве парфюмерно-косметических средств, фармацевтике, сельскохозяйственном производстве). Внедрение таких технологических схем в значительной степени обусловлено достижениями современной биотехнологии, сделавшей доступным и экономически обоснованным извлечение из пищевого сырья широкой гаммы новых продуктов. В рамках комплекса мероприятий будут созданы условия для распространения технологий глубокой переработки пищевого сырья и радикального снижения отходов пищевой промышленности. В результате реализации Программы в России будет развернуто производство широкой гаммы пищевых ингредиентов, включая витамины и функциональные смеси, достигнуты высокие показатели переработки продовольственного сырья, обеспечено импортозамещение по большинству импортируемых в настоящее время ингредиентов для производства пищевых продуктов.
Ответственный за разработку и реализацию комплекса мер по направлению - Минсельхоз России.
Примечание от PROPIONIIX: Здесь актуальным для ООО "Пропионикс" являются направления Сельскохозяйственной биотехнологии, отмеченные в программе под пп 5.7. и 5.9 (кормовой белок и биологические компоненты кормов и премиксов):
"Кормовой белок"
Согласно терминологии указанной программы, кормовой микробиологический белок (кормовые дрожжи)* - это сухая концентрированная биомасса дрожжевых клеток, специально выращиваемая на корм сельскохозяйственным животным, птице, пушным зверям, рыбе. Добавление кормового белка в корма резко улучшает их качество и способствует повышению производительности в животноводстве. Комплексом мероприятий будет предусмотрено развитие производства кормового белка в России и создание новых научно-технических заделов, совершенствующих технологии его производства и виды использования.
Примечание от PROPIONIX: Однако здесь следует отметить, что использование бактерий в качестве продуцента белкового корма является более эффективным, так как бактерии образуют до 75% белка по массе, в то время как дрожжи - не более 60%. Например, использование различных штаммов пропионовокислых бактерий (Propionibacterium freudenreichii subsp. shermanii), позволяет получать кормовой белок со значительными технологическими и качественными преимуществами.
"Биологические компоненты кормов и премиксов"
Современный уровень технологий кормления сельскохозяйственных животных опирается на широкое применение биологичских компонентов (ферменты, аминокислоты, БВК, пробиотики и другие). В результате развития животноводства в России, которое в основном опирается на импорт технологий и поголовья, сформировался емкий рынок этих продуктов биотехнологии. Однако формирование рынка не привело пока к развитию производственной и технологической базы, появлению новых продуктов, созданных на основе научных достижений российских ученых.
В 2010 году в животноводстве в качестве кормов было использовано 45 млн. т зерна, что говорит о крайне низкой эффективности кормопроизводства в стране. Доля зерна в комбикормах составляет 70% (в странах Европейского Союза - 40-45%), кроме того, в непереработанном виде было использовано более половины из общего количества зерна предназначенного для кормов.
Важно отметить, что производство комбикормов и премиксов в значительной степени ведется без использования биопрепаратов (ферментов, ветеринарных и кормовых антибиотиков, пробиотиков и так далее). При таком кормлении конверсия корма в получение животноводческой продукции существенно отстает от мировых показателей, что снижает конкурентоспособность российского животноводства. Комплексом мероприятий будут созданы условия для развития производственной и технологической базы биотехнологических компонентов кормов и премиксов.
Реализация указанных комплексов мероприятий позволит решить вопросы создания высокоэффективного сельского хозяйства и обеспечения населения полноценным сбалансированным питанием.
Некоторые направления в пищевой биотехнологии:
См. дополнительно:
Ферментированные продукты питания→
ВВЕДЕНИЕ. Процессы ферментации с использованием микроорганизмов нашли широкое применение в производстве пищевых продуктов. Реакции, осуществляемые микроорганизмами, используются при консервировании, рН среды понижается в результате молочнокислого брожения (в квашеной капусте), после частичного гидролиза в присутствии микроорганизмов (хлебная закваска, колбасные изделия, темпех) продукты лучше усваиваются организмом, для улучшения вкуса (кисломолочные продукты), а также для получения соусов (соевый соус, мисо из риса). В развитых странах примерно треть всех продуктов питания получают путем ферментации, осуществляемой определенными штаммами микроорганизмов.
СТАРТОВЫЕ КУЛЬТУРЫ. В пищевой промышленности используются самые разнообразные микроорганизмы. Они служат в качестве стартовых культур при приготовлении кисломолочных продуктов, различных сортов хлеба (закваски), выпечки (пекарские дрожжи), в пивоварении (пивные дрожжи) и виноделии. Стартовая культура может содержать только один штамм микроорганизмов, различные микроорганизмы одного вида и смешанные культуры. Наиболее важным критерием качества культуры является высокая скорость ферментации и получение желаемого продукта, например обладающего устойчивостью к антибиотикам или фаговой инфекции. Объем рынка стартовых культур в мире составляет сотни миллионов долларов США.
ПРОИЗВОДСТВО КОЛБАС. Сырокопченые колбасы (они могут храниться вне холодильной камеры) готовят со стартовой культурой стафилококковых бактерий (Staphylococcus carnosus) и лактобактерий, а также бактерий рода Penicillium. Гликоген мышечной ткани перерабатывается микроорганизмами с образованием молочной кислоты, это позволяет снизить уровень рН ниже 5 и предотвратить рост многих других микроорганизмов. В кислой среде белок мышечной ткани (изоэлектрическая точка 5,3) переходит в желеобразное состояние. Продукты ферментативных превращений жиров и белков обеспечивают специфический вкус колбасного изделия. При изготовлении соленых колбас (поваренная соль, нитраты и нитриты в качестве консервантов) используют стафилококковые бактерии или лактобактерии, устойчивые к повышенному содержанию соли.
СЫРОВАРЕНИЕ. В 1994 г. мировое производство сыра достигло 14,6 млн т в год, при этом около 6 млн т сыра было произведено в странах Европейского союза (ЕС). В Европе производится более 1000 сортов сыра. Чтобы приготовить сыр, молоко сбраживают, добавляя в него сычужный фермент или рекомбинантный химозин. Спровоцированная стартовыми культурами ферментация приводит к образованию молочнокислого сгустка, из которого вызревает сыр. В производстве сыров используют самые разные микроорганизмы, чаще всего Penicillum (камамбер, рокфор), Streptococcus, Propionibacterium freudenreichii (эмменталь) и Lactococcus (гарцер). Разнообразие сортов сыра объясняется различным происхождением молока (коровье, козье или овечье), технологией производства (аэробные, анаэробные или смешанные условия роста бактериальной культуры), а также методами введения стартовых культур (поверхностное нанесение или внутреннее впрыскивание).
ФЕРМЕНТИРОВАННЫЕ ПРОДУКТЫ ИЗ НЕ ЕВРОПЕЙСКИХ СТРАН. В китайской кухнетрадиционно используется так называемый красныйрис (ang-kak). Его получают, добавляя к влажному рису споры Monascus purpureus. Благодаря антимикробным свойствам красный рис получил широкое распространение в качестве приправы, его также применяют при нарушениях пищеварения. В восточной кухне готовят кишк (kishk), для этого набухшиезерна пшеницы подвергают ферментации бактериями, обитающими в кислом молоке. Японская приправа мисо получается в результате добавления к пропаренному рису грибов Aspergillus oryzae. По очень древнему рецепту китайской кухни до сих пор готовятсоевый соус – белковый гидролизат, обладающийсильным ароматом. Для этого в смесь соевой муки пшеничных отрубей впрыскивают культуры грибов Aspergillus oryzae; в условиях повышенной влажностипри температуре 35°С образуется поверхностнаякультура. После добавления равного объема водногораствора соли смесь подвергают ферментации молочнокислыми бактериями или дрожжами в течениегода при комнатной температуре. Путем ферментации соевых бобов или пропаренного риса под действием грибов Rhizopus oligosporus готовят темпех (tempeh) – основную пищу населения Индонезии и Малайзии.
ВВЕДЕНИЕ. История использования человеком процессов молочнокислого брожения молока (кисломолочные продукты), овощей (квашеная капуста) и кормов для скота (силос) насчитывает сотни, а для некоторых процессов и тысячи лет. Луи Пастер, впервые выделивший молочнокислые бактерии в 1856 г., заложил основы для понимания биохимии этого важного процесса. Продукты, получаемые в результате молочнокислого брожения, обладают хорошими вкусовыми качествами и долго хранятся, так как снижение pH, происходящее в процессе брожения, препятствует развитию других микроорганизмов.
МОЛОЧНОКИСЛЫЕ БАКТЕРИИ. Группа молочнокислых бактерий весьма гетерогенна по морфологии клеток, однако физиология ее представителей описана достаточно однозначно: все молочнокислые бактерии окрашиваются по методу Грама и являются облигатными аэробами, т. е. они не синтезируют гемсодержащие белки (каталазы), однако могут расти в присутствии кислорода. Молочнокислые бактерии расщепляют лактозу до глюкозы и галактозы, а затем превращают их в лактат. При «гомоферментативном» молочнокислом брожении (также называемом гликолизом), которое осуществляют Streptococcus pyogenes, Lactobacillus casei и Lactococcus lactis, из 1 моль глюкозы образуется 2 моль лактата, а при «гетероферментативном» брожении, осуществляемом Leuconostoc mesenteroides и Lactobacillus brevis, – только 1 моль лактата. От наличия лактатрацемазы в клетках бактерий зависит образуется ли L-(+)-молочная кислота (обычно выход 50–90%), D-(–)-молочная кислота или их рацемат. Физиологическую ценность кисломолочных продуктов трудно переоценить: в них нет лактозы и они содержат белки, уже подвергшиеся мягкому гидролизу.
КИСЛОМОЛОЧНЫЕ ПРОДУКТЫ. Среди кисломолочных продуктов в Европе наиболее распространены простокваша, сметана, йогурт, кефир и пахта (<1% жира). Эти продукты получаются при бактериальном заражении сырого молока в естественных условиях хранения. В йогурте содержание L-(+)-молочной кислоты более 95%. Этот продукт производят, используя Lactobacillus acidophilus или облигатно анаэробный штамм L. bifidus, обнаруженный в кишечной флоре грудных младенцев. Йогурты особенно хорошо усваиваются организмом и оказывают стимулирующее действие на иммунную систему. В результате реакций, осуществляемых бактериальными протеазами и липазами, кисломолочные продукты приобретают своеобразный вкус. Наиболее важными микроорганизмами для производства молочных продуктов являются стрептококки, лактобактерии, Leuconostoc и дрожжи.
ЗАКВАШИВАНИЕ ОВОЩЕЙ И ОВОЩНЫХ СОКОВ. В Германии особой популярностью пользуются квашеная капуста и соленые огурцы (заготавливаются иреализуются через торговую сеть около 200 000 т в год). Для заквашивания обычно используют белокочанную капусту, которую помещают в бочки вместимостью до 100 т. Как правило, процесс брожения осуществляется разнообразными микроорганизмами(бактериями, дрожжами и грибами) в результатеспонтанного заражения, однако в некоторых случаях брожение инициируют добавлением закваски (стартовых культур). В качестве других примеров использования в пищу овощей, подвергшихся молочнокислому брожению, можно привести квашеную свеклу(Польша и Россия) и кимчи (кислая китайская капуста или редька, Корея). Овощные соки, подвергшиесяферментации молочнокислыми бактериями, особенно богаты витаминами и минеральными веществами,хорошо усваиваются организмом и хранятся продолжительное время (например, морковный и томатныйсоки).
ЗАКВАСКА. В отличие от пшеничной муки, используемой для приготовления дрожжевого теста, ржаная мука закисает при рН<4,3; это позволяет получать своеобразную корочку при выпекании хлеба из ржаной муки. В закваске для теста при рН 4,2 наряду с молочнокислыми бактериями содержатся дрожжи.
СИЛОСОВАНИЕ – распространенный способ заготовки сочных кормов, в частности, кормовой свеклы. Силосную культуру измельчают, а затем помещают в специальные хранилища с ограниченным доступом воздуха. В таких условиях осуществляется процесс молочнокислого брожения. Если молочная кислота образуется в недостаточных количествах, силос может оказаться зараженным маслянокислыми бактериями, в том числе представителями клостридий. В этом случае бактерии могут попасть в молоко коров, которые питались зараженным силосом. Как правило, в силосе присутствует психотрофный патоген Listeria monocytоgenes, который в случае несоблюдения правил пастеризации может активно размножаться на пищевых продуктах (в мягких сырах, мясном фарше и зеленом салате) при длительном хранении в холодильнике.
На заметку:
Упрощенный перечень объектов биотехнологии
Биотехнологическое производство пищевых продуктов
Алкогольные напитки
Пивоварение
Ферментация в пищевой промышленности
Пищевые продукты и молочнокислое брожение
Спирты, кислоты и аминокислоты
Этиловый спирт
1-Бутанол, ацетон
Уксусная кислота
Лимонная кислота
Молочная и глюконовая кислоты
Аминокислоты
L-Глутаминовая кислота
D,L-Метионин, L-лизин и L-треонин
Аспартам, L-фенилаланин и L-аспарагиновая кислота
Получение L-аминокислот в процессе ферментативной трансформации
Антибиотики
Антибиотики: источники, применение и механизмы действия
Антибиотики: получение. Устойчивость к антибиотикам
β-Лактамные антибиотики: структура, биосинтез и механизм действия
β-Лактамные антибиотики: промышленное получение
Пептидные антибиотики и антибиотики – производные аминокислот
Гликопептидные, полиэфирные и нуклеозидные антибиотики
Аминогликозидные антибиотики
Тетрациклины, хиноны, хинолоны и другие ароматические антибиотики
Поликетидные антибиотики
Получение новых антибиотиков
Специальные продукты
Витамины
Нуклеозиды и нуклеотиды
Биодетергенты и биокосметика
Микробные полисахариды
Биоматериалы
Биотрансформация
Биотрансформация стероидов
Ферменты
Ферменты
Ферментативный катализ
Ферменты в клинических анализах
Тесты с помощью ферментов
Применение ферментов в промышленных технологиях
Ферменты в производстве моющих средств
Ферменты, расщепляющие крахмал
Ферментативное расщепление крахмала в промышленности
Ферментативное превращение сахаров
Утилизация целлюлозы и полиозы
Использование ферментов в целлюлозно-бумажной промышленности
Пектиназы
Ферменты в производстве молочных продуктов
Использование ферментов в хлебобулочной и мясоперерабатывающей промышленности
Ферменты в кожевенной и текстильной промышленности
Перспективы получения ферментов для промышленных технологий
Белковая инженерия
Пекарские и кормовые дрожжи
Пекарские и кормовые дрожжи
Белки и жиры из одноклеточных организмов
Биотехнология в медицине
Инсулин
Гормон роста и другие гормоны
Гемоглобин, сывороточный альбумин и лактоферрин
Факторы свертывания крови
Антикоагулянты и тромболитики
Ингибиторы ферментов
Иммунная система
Стволовые клетки
Тканевая инженерия
Интерфероны
Интерлейкины
Эритропоэтин и другие факторы роста
Другие белки, имеющие медицинское значение
Вакцины
Рекомбинантные вакцины
Антитела
Моноклональные антитела
Рекомбинантные и каталитические антитела
Методы иммуноанализа
Биосенсоры
|
Биотехнология и окружающая среда
Аэробная очистка сточных вод
Анаэробная очистка сточных вод и переработка ила
Биологическая очистка газовых выбросов
Биологическая очистка почв
Микробиологическое выщелачивание руд и биокоррозия
Биотехнология в сельском хозяйстве
Животноводство
Перенос эмбрионов и клонирование животных
Картирование генов
Трансгенные животные
Генетическая ферма и ксенотрансплантация
Растениеводство
Культивирование растительных клеток: поверхностные культуры
Культивирование растительных клеток: суспензионные культуры
Трансгенные растения: методы получения
Трансгенные растения: устойчивость к неблагоприятным воздействиям
Трансгенные растения
Основы микробиологии
Вирусы
Бактериофаги
Микроорганизмы
Бактерии
Некоторые бактерии, важные для биотехнологии
Грибы
Дрожжи
Микроорганизмы: выделение и хранение штамма. Техника безопасности
Усовершенствование штаммов микроорганизмов
Основы биотехнологических методов
Микроорганизмы: рост в искусственных условиях
Кинетика образования продуктов метаболизма и биомассы в культуре микроорганизмов
Периодическая ферментация с добавлением субстрата и непрерывная ферментация
Технология ферментации
Промышленные процессы ферментации
Культивирование животных клеток
Биореакторы для культивирования животных клеток
Биореакторы с иммобилизованными ферментами и клетками
Очистка биотехнологических продуктов
Очистка биотехнологических продуктов: хроматографические методы
Экономические аспекты биотехнологического производства
Методы генетической инженерии
Структура ДНК
Функции ДНК
Эксперимент в генетической инженерии
Методы выделения ДНК
Ферменты, модифицирующие ДНК
ПЦР: метод и его практическое применение
ПЦР: лабораторная практика
ДНК: химический синтез и определение размера молекул
Секвенирование ДНК
Введение ДНК в живые клетки (трансформация)
Идентификация и клонирование генов
Экспрессия генов
Выключение генов
РНК
Геномные библиотеки и картирование генома
Геном прокариот
Геном эукариот
Геном человека
Функциональный анализ генома человека
ДНК-анализ
Белковые и ДНК-чипы
Маркерные группы
Тенденции развития
Генная терапия
Поиск биологически активных веществ
Протеомика
Биоинформатика
Обмен веществ
Метаболомика и метаболическая инженерия
Системная биология
«Белая» биотехнология
Техника безопасности, этические и экономические аспекты
Техника безопасности при проведении генно-инженерных манипуляций
Сертификация биотехнологической продукции
Этические аспекты генетической инженерии
Патентование в биотехнологии
|
Дополнительно см.:
К разделу: Закваски промышленные
ОСНОВНЫЕ ПОДРАЗДЕЛЫ