Биосинтез аминокислот

ПРОМЫШЛЕННЫЙ БИОСИНТЕЗ АМИНОКИСЛОТ

technology  

МИКРОБИОЛОГИЧЕСКИЙ СИНТЕЗ. ОБЩИЕ СВЕДЕНИЯ

Микробиологический синтез - промышленный способ получения химических соединений и продуктов (например, дрожжей кормовых), осуществляемый благодаря жизнедеятельности микробных клеток. Иногда к микробиологическому синтезу относят также промышленные процессы, основанные на использовании иммобилизованных клеток.

Наиболее важные продукты микробиологического синтеза:

Антибиотики; Аминокислоты; Нуклеозидфосфаты; Витамины, провитамины, коферменты; Алкалоиды; Гиббереллины; Ферменты; Белково-витаминные препараты.

Некоторые продукты микробиологического синтеза, например, пекарские дрожжи, давно использовались человеком, однако широкое применение микробиологического синтеза началось в 40-50х годах 20 века в связи с освоением производства пенициллина. К этому же времени относится возникновение новой отрасли народного хозяйства - микробиологической промышленности.

В микробиологическом синтезе сложные вещества образуются из более простых в результате функционирования ферментных систем микробной клетки. Этим он отличается от брожения. в результате которого также образуются различные продукты обмена веществ микроорганизмов (спирты, органические кислоты и др.), но преимущественно в результате ферментативного распада органических веществ.

Микробиологический синтез использует способность некоторых организмов размножаться с большой скоростью (выделены бактерии и дрожжи, биомасса которых увеличивается в 500 раз быстрее, чем у самых урожайных сельскохозяйственных культур) и к "сверхсинтезу" - избыточному образованию продуктов обмена веществ (аминокислот, витаминов и др.), превышающему потребности микробной клетки.

Для микробиологического синтеза органических соединений в качестве сырья применяют наиболее дешевые источники азота (например, нитраты или соли аммония) и углерода (например, углеводы, органические кислоты, спирты, жиры, углеводороды, в том числе газообразные). Микробиологический синтез включает ряд последовательных стадий. Главные из них - подготовка необходимой культуры микроорганизма - продуцента, выращивание продуцента, культивирование продуцента в заданных условиях, в ходе которого и осуществляется микробиологический синтез (эту стадию часто называют ферментацией), фильтрация и отделение биомассы, выделение и очистка требуемого продукта (если это необходимо), сушка.

Ферментацию проводят в специальных реакторах (ферментерах), снабженных устройствами для перемешивания среды и подачи стерильного воздуха. Управление процессом может осуществляться с помощью электроники. Наиболее удобно ферментацию осуществлять непрерывным способом - при постоянной подаче питательной среды и выводе продуктов микробиологического синтеза. Так производят, например, кормовые дрожжи. Однако большинство метаболитов получают периодическим способом - с выводом продукта в конце процесса.

МИКРОБНЫЙ СИНТЕЗ АМИНОКИСЛОТ

биосинтез аминокислот бактериями Специфические ферменты, регулирующие биосинтез аминокислот, широко распространены у бактерий. В любом живом организме аминокислоты расходуются прежде всего на биосинтез первичных метаболитов - ферментных и неферментных белков. Следовательно,  возможен и другой путь получения аминокислот, а именно - из гидролизатов соответствующих белков (триптофан разрушается при кислотном гидролизе), в том числе из нативной (т.е. находящейся в природном состоянии, не модифицированной, сохранившей структуру, присущих ей живых клеток) биомассы микробных клеток.

Промышленный биосинтез аминокислот. Природные аминокислоты являются, как правило, оптически активными L - и D ­формами, которые трудно разделить. Вот почему микробный синтез с помощью коринебактерий (к данной группе микроорганизмов относятся бифидобактерии и пропионовокислые бактерии) и некоторых других микробов является ныне основным и экономически выгодным.

Первое место здесь по праву занимает Япония, где лишь глутаминовой кислоты изготавливается свыше 100 тысяч тонн в год; большинство природных незаменимых аминокислот производит фирма «Такеда». С. Киношита, впервые в 50-е годы открывший и доказавший перспективность микробного синтеза, уже 1963 году признавал: «Мало сомнения в том, что недалеко то время, когда с помощью микроорганизмов будет возможно производить все известные аминокислоты».

Это время наступило уже к 70-м годам. Получены микробы ­суперпродуценты из родов Brevibacterium, Corynebacterium, Micrococcus и другие, с помощью которых освоено крупнотоннажное производство не только глутамата, но и L - лизина, L - валина, L - гистидина и других. Получен штамм Escherichia coli, продуцирующий за 48 часов 27 г / л L - пролина, и штамм, продуцирующий до 22,4 г / л L - фениланина. С помощью Corynebacterium sp. можно получигь алкапосодержащих средах L ­тирозин (до 19 г/л ); С помощью Corynebacterium glutamicum на глюкозной среде - L ­валин (до 11 г / л; L - аргинин, L - гистидин, L - изолейцин - 15 - 20,8 г / л.

методы промышленного получения (синтеза) аминокислот

Энзиматический синтез

По данному способу процесс получения аминокислот заключается в синтезе предшественника аминокислоты и последующей его трансформации в целевую аминокислоту с использованием выделенных ферментов или микроорганизмов.

Предшественники аминокислот

Ферментативный синтез

Данный способ получения аминокислот основан на способности микроорганизмов синтезировать все L-аминокислоты, а в определенных условиях — обеспечивать их «сверхсинтез». Основное отличие микробиологической ферментации от энзиматической заключается в использовании не отдельных выделенных, а всех ферментов микроорганизмов.

Продуцентами аминокислот в биосинтезе наиболее часто служат бактерии, относящиеся к родам Corynebacterium, Brevibacterium, Escherishia. Субстратом при производстве аминокислот является углеводное сырье (меласса, гидролизаты крахмала и целлюлозы), этанол, уксусная или другие органические кислоты, а также углеводороды. В качестве источника азота используют соли аммония, нитраты, а также аминокислоты.

У микробиологического синтеза есть свои преимущест­ва и свои недостатки. С одной стороны, в нем мало стадий и требуется от­носительно простая и универсальная аппаратура. С другой стороны, живые организмы, с которыми приходится работать, очень чувствительны к ма­лейшему изменению условий, а концентрация целевого продукта получа­ется низкой, что ведет к увеличению размеров аппаратуры.

Биосинтез аминокислот. Общие принципы.

Большинство микроорганизмов и зеленые растения способны синтезировать de novo все двадцать аминокислот, из которых строятся белки. Углеродные скелеты аминокислот образуются из промежуточных продуктов обмена. Аминогруппы вводятся путем прямого аминирования или трансаминирования. Перевод неорганического азота в органические соединения происходит всегда через аммиак. Нитраты, нитриты и молекулярный азот предварительно восстанавливаются до аммиака (ассимиляционная нитратредукция) и только после этого включаются в состав органических соединений (рис. 7.16, а, б, в). Лишь немногие из аминокислот образуются в результате прямого аминирования свободными ионами NH4. В первичной ассимиляции - аммиака участвуют L-глутаматдегидрогеназа (рис. 7.16, е) и L-аланиндегидрогеназа (ж), которые осуществляют восстановительное аминирование 2-оксокислот; АТР в этом процессе не участвует. Образование глутамина из глутамата катализируется глутаминсинтетазой (г). Этот фермент имеет во много раз большее сродство к ионам аммония (меньшую константу -Км), чем названные дегидрогеназы, и поэтому активен даже при крайне низких концентрациях NH4 ; для образования глутамина необходим АТР. С помощью глутаматсинтазы (д) амидная группа глутамина может быть перенесена на 2-оксоглутарат. Эта система включения аммонийного азота в органические соединения у многих бактерий и растений, видимо, создается и используется в тех случаях, когда концентрация ионов аммония в среде очень мала (меньше 1 мМ/л), а также при фиксации N2.

пути ассимиляции азота

Большинство остальных аминокислот получает свою аминогруппу от одной из первичных аминокислот в результате трансаминирования. Из свободных аминокислот в цитоплазме количественно преобладает глутаминовая кислота (больше половины всего «пула» аминокислот).

У ряда микроорганизмов хорошо изучены пути синтеза всех двадцати аминокислот. Исходным материалом для синтеза служат простые промежуточные продукты обмена (пируват, 2-оксоглутарат, оксалоацетат или фумарат, эритрозо-4-фосфат, рибозо-5-фосфат и АТР). При синтезе большинства аминокислот аминогруппа вводится только на последнем этапе путем трансаминирования. Некоторые аминокислоты образуются в результате ряда превращений других аминокислот, и в этих случаях трансаминирования не требуется. Аминокислоты можно подразделить на группы, исходя из путей их синтеза (рис. 7.17). Синтез различных аминокислот включает разное число этапов, катализируемых ферментами. Примечателен тот факт, что аминокислоты, которые человек должен получать в готовом виде, синтезируются особенно длинным путем.

двадцать аминокислот, необходимых для синтеза белков образуются из простых соединений - продуктов промежуточного обмена

Относительно быстрое выяснение путей  биосинтеза  аминокислот и других соединений стало возможным благодаря использованию ауксотрофных мутантов грибов и особенно бактерий. Ауксотрофность многих мутантов обусловлена утратой способности к образованию какого-то фермента, участвующего в биосинтезе. Для роста мутанта нужен в этом случае конечный продукт того пути биосинтеза, который блокирован из-за выпадения функции фермента. Эти мутанты обладают еще одним ценным свойством: они растут не только в присутствии конечного продукта блокированного пути, но и в присутствии промежуточных продуктов, образующихся на отрезке между блокированным этапом и конечным продуктом. В то же время субстрат для блокированной реакции часто накапливается: если, например, отсутствует фермент bто в среду выделяется промежуточный продукт. Благодаря этому некоторые мутанты, у которых блокированы разные этапы одного и того же пути синтеза, могут снабжать друг друга недостающими веществами. Мутант с блоком на более позднем этапе (отсутствие фермента d) обеспечивает недостающим промежуточным продуктом клетки другого мутанта с блоком на более раннем этапе (отсутствие фермента b). В результате таких опытов удается расположить определенных мутантов в ряд, в котором каждый предшествующий мутант будет поддерживать рост всех следующих за ним. Путем анализа накапливающихся промежуточных продуктов, выделения и очистки ферментов, а также с помощью других методов удалось уже выяснить многие пути биосинтеза.

ССЫЛКИ К РАЗДЕЛУ О ПРЕПАРАТАХ ПРОБИОТИКАХ

  1. ПРОБИОТИКИ
  2. ДОМАШНИЕ ЗАКВАСКИ
  3. БИФИКАРДИО
  4. КОНЦЕНТРАТ БИФИДОБАКТЕРИЙ ЖИДКИЙ
  5. ПРОПИОНИКС
  6. ЙОДПРОПИОНИКС
  7. СЕЛЕНПРОПИОНИКС
  8. БИФИДОБАКТЕРИИ
  9. ПРОПИОНОВОКИСЛЫЕ БАКТЕРИИ
  10. ПРОБИОТИКИ И ПРЕБИОТИКИ
  11. СИНБИОТИКИ
  12. АНТИОКСИДАНТНЫЕ ФЕРМЕНТЫ
  13. АНТИОКСИДАНТНЫЕ СВОЙСТВА
  14. АНТИМУТАГЕННАЯ АКТИВНОСТЬ
  15. МИКРОФЛОРА КИШЕЧНОГО ТРАКТА
  16. МИКРОФЛОРА И ФУНКЦИИ МОЗГА
  17. ПРОБИОТИКИ И ХОЛЕСТЕРИН
  18. ПРОБИОТИКИ ПРОТИВ ОЖИРЕНИЯ
  19. МИКРОФЛОРА И САХАРНЫЙ ДИАБЕТ
  20. ПРОБИОТИКИ и ИММУНИТЕТ
  21. ПРОБИОТИКИ и ГРУДНЫЕ ДЕТИ
  22. ДИСБАКТЕРИОЗ
  23. МИКРОЭЛЕМЕНТНЫЙ СОСТАВ
  24. ПРОБИОТИКИ С ПНЖК
  25. ВИТАМИННЫЙ СИНТЕЗ
  26. АМИНОКИСЛОТНЫЙ СИНТЕЗ
  27. СИНТЕЗ ЛЕТУЧИХ ЖИРНЫХ КИСЛОТ
  28. ФУНКЦИОНАЛЬНОЕ ПИТАНИЕ
  29. АЛИМЕНТАРНЫЕ ЗАБОЛЕВАНИЯ
  30. ПРОБИОТИКИ ДЛЯ СПОРТСМЕНОВ
  31. ПРОИЗВОДСТВО ПРОБИОТИКОВ
  32. ЗАКВАСКИ ДЛЯ ПИЩЕВОЙ ПРОМЫШЛЕННОСТИ
  33. НОВОСТИ