ООО "ПРОПИОНИКС"
пн-пт с 09:00 до 18:00 | +7 (966) 348-80-35 |
Примечание: Одним из перспективных направлений в области разработки и внедрения пищевых антимутагенов является использование в рационе человека продуктов функционального питания на основе пробиотических микроорганизмов. Обнаруженные антитмутагенные и другие полезные свойства дружественных нам бактерий открывают огромные перспективы их использования в пищевой промышленности, а также здравоохранительной практике. Это особенно актуально в свете массового использования в пищевой отрасли различных пищевых добавок, влияющих на процессы мутагенеза. См.: Антимутагенная активность пробиотиков
СОДЕРЖАНИЕ СТРАНИЦЫ
Современные пищевые технологии приготовления пищевых продуктов массового потребления предусматривают широкое применение различных пищевых добавок. Они не являются необходимыми компонентами пищи, но без их применения выбор пищевых продуктов был бы значительно беднее, а пищевые технологии значительно более сложными и дорогостоящими. Без применения пищевых добавок практически невозможно изготовление полуфабрикатов, блюд быстрого приготовления, они также необходимы для улучшения органолептических свойств, удлинения сроков хранения, снижения калорийности пищи.
Сегодня известно 22 класса пищевых добавок. Это красители, консерванты, антиокислители, эмульгаторы, загустители, желатирующие вещества, стабилизаторы, усилители вкуса, подсластители, разрыхлители, наполнители и ряд других. Применение пищевых добавок регулируется различными нормативными актами. Одним из главных условий для разрешения применения пищевых добавок является их токсикологическая безопасность. Последняя достигается путем предварительного экспериментального исследования изменений функционального состояния и морфологических изменений рганизма под влиянием той или иной пищевой добавки. В то же время до сих пор очевидно недостаточное внимание уделяется оценке влияния пищевых добавок на процессы мутагенеза.
Мутагенез (mutagenesis) [лат. mutatio — изменение и греч. genesis — происхождение, развитие]: процесс возникновения в организме наследственных мутаций, появляющихся естественно (спонтанно) или вызываемых (индуцируемых) различными физическими или химическими факторами — мутагенами. В основе М. лежат изменения в молекулах нуклеиновых кислот, хранящих и передающих наследственную информацию. Эти изменения выражаются в виде генных мутаций или хромосомных перестроек.
Мутагенез - явление усиления спонтанного мутирования под влиянием агентов различной природы. Типичными физическими факторами, вызывающими индукцию мутаций, являются ионизирующее и ультрафиолетовое облучение, химическими - нитрозопроизводные и алкилирующие агенты, биологическими - вирусы. Кроме того, есть убедительные основания полагать, что существенными факторами, вызывающими возникновение мутаций у человека, могут явиться стрессовые нагрузки и другие состояния, сопровождающиеся нарушениями естественной антиоксидантной защиты ДНК-репарации.
См. также: Мутагенез и пробиотики
Биологические и медицинские последствия индуцированного мутагенеза представляют серьезную угрозу здоровью и жизни человека. Индуцированные мутации ответственны за возникновение наследственных заболеваний, врожденных пороков развития, онкологических заболеваний. С ними связывают преждевременное старение и бесплодие. Массированное воздействие мутагенов на генетические структуры может явиться причиной генетического вырождения человека как биологического вида. К сожалению, несмотря на серьезнейшую угрозу для жизни и здоровья человека со стороны индуцированного мутагенеза, оценка мутагенных свойств пищевых добавок не является необходимым условием их внедрения в практику, поэтому вопрос генетической безопасности их применения остается открытым.
С общетеоретических позиций влияние пищевых добавок на мутагенез может быть сведено к трем основным проявлениям:
Совершенно очевидно, что пищевые добавки с мутагенными и комутагенными свойствами представляют очевидную опасность для жизни и здоровья человека, тогда как на основе пищевых добавок с антимутагенными свойствами возможна разработка продуктов, способных снижать «генетический риск» воздействия средовых и промышленных мутагенов на генетические структуры человека.
Исследованию на мутагенную активность подвергнуты далеко не все использующиеся пищевые добавки. Однако даже эта ограниченная работа позволила выявить мутагенные соединения практически среди всех известных классов пищевых добавок.
1. Антиокислители.
Это наиболее хорошо исследованная в генетическом отношении группа пищевых добавок. Полученные результаты довольно противоречивы, но дают достаточно оснований полагать, что применение бутилгидрокситолуола (Е321) и особенно бутилгидроксианизола (Е320) может быть небезопасно с генетической точки зрения.
2. Ароматизаторы.
Ароматизирующий агент - коричный альдегид проявил мутагенные свойства в экспериментах на мышах и крысах, ester gum - при введении мышам. Пищевые ароматизаторы из лука и чеснока были мутагенны в экспериментах на бактериях.
3. Консерванты.
Исследования хлорида олова (Е512), применяющегося в качестве консерванта в ряде стран, показали его генотоксичность в микробиологических тестах. Формальдегид (Е240) проявил мутагенные свойства в микробиологических тест-системах, индуцировав генные мутации в клетках китайского хомячка in vitro и хромосомные мутации в культуре клеток человека.
Имеются сообщения о мутагенной активности консерванта нитрита натрия и бактериального ингибитора для вин и соков бисульфита натрия. Разработанный в Японии консервант AF-2, являющийся производным нитрофурана, запрещен к применению в связи с наличием мутагенных свойств.
Более сложные результаты были получены при оценке мутагенной активности сорбиновой кислоты и ее солей (Е200, Е201, Е202). Первоначально было показано, что они индуцируют генные и хромосомные мутации в культивируемых эукариотических клетках. В дальнейшем в исследованиях in vitro и in vivo эти результаты не нашли подтверждения. Однако было отмечено, что перечисленные агенты могут приобретать генотоксические свойства в результате окисления. Консервант тиабендазол (Е233) продемонстрировал мутагенные свойства в экспериментах на клетках китайского хомячка in vitro, но был неактивен в микроядерном тесте на мышах.
4. Красители.
В тесте Эймса мутагенную активность продемонстрировали основной красный, метиловый красный судан 4, метиловый оранжевый, конго красный, ализариновый красный В, эриохром, триптофановый синий, синий Эванса и другие.
Пищевой зеленый S (E142) и пунцовый SX (E125) продемонстрировали мутагенные свойства в экспериментах на мышах. В культурах клеток установлены мутагенные свойства метанилового желтого, оранжевого 11 и флоксина. «Сахарный колер» - (Е150а) и (Е150с) способны вызывать хромосомные мутации в культивируемых клетках млекопитающих, но не обладать генотоксической активностью в экспериментах на млекопитающих. Тартразин был мутагенен в культуре лимфоцитов периферической крови. В то же время тартразин, а также индигокармин (Е132), сансет желтый («солнечный закат» FCF) (E110*), азорубин (Е122) и патентованный V (Е131) в наших исследованиях не были активны в экспериментах на мышах.
5. Подсластители.
Сведения о многочисленных исследованиях сахарина и его солей (Е954) достаточно противоречивы. Одни авторы указывают на наличие у сахарина мутагенных свойств, другими подобные эффекты не обнаружены. В наших исследованиях, посвященных изучению мутагенности сахарина, а также цикламата (Е952), ацесульфама (Е950) и аспартама (Е951), не выявление мутагенной активности указанных пищевых добавок в экспериментах на мышах.
6. Другие пищевые добавки.
Пиколинат хрома продемонстрировал выраженную мутагенную активность в экспериментах на культивируемых эукариотических клетках, бромат калия (Е924) обладал аналогичным эффектом в экспериментах на крысах.
Исследования комутагенной активности большинства пищевых добавок до сих пор остаются за пределами внимания исследователей. Работы в этом направлении имеют единичный характер. В то же время известные сведения позволяют уверенно утверждать, что комутагенные свойства присущи целому ряду пищевых добавок. Танины (Е181) проявили комутагенную активность по отношению к цитогенетическим эффектам митомицина С в ряде экспериментов, проведенных на эукариотических тест-системах. Выявлен синергизм мутагенных эффектов формальдегида (Е240) и нитрозометилмочевины.
Такое общеупотребляемое соединение как аскорбиновая кислота (ЕЗОО), продемонстрировала способность усиливать повреждающее действие блеомицина на хромосомы культивируемых лимфоцитов человека, а также проявила комутагенную активность относительно эффектов некоторых металлов в экспериментах на мышах.
В этой связи уместно рассмотреть другие примеры комутагенности витаминов, которые рекомендуются сегодня для обогащения пищевых продуктов. Витамин Е увеличивает мутагенность блеомицина и этилметансульфоната. Витамин В2 обладает аналогичным эффектом по отношению к соединениям хрома, а витамин А усиливает мутагенное действие этилметансульфоната.
В настоящее время все большее распространение получает идея того, что ряд пищевых добавок может одновременно с технологическими функциями выполнять роль хемопревенторов, т.е. увеличивать устойчивость человека к разнообразным воздействиям, в том числе и мутагенным. Немаловажную роль в формировании этой точки зрения сыграли позитивные результаты, установленные при изучении антимутагенных свойств пищевых добавок и витаминов, использующихся для обогащения пищевых продуктов.
1. Антиоксиданты.
Сегодня имеется достаточно большое количество сведений, указывающих, что утилгидрокситолуол (Е321), бутилгидроксианизол (Е320), пропилгаллат (Е310), этоксихин (Е324) обладают антимутагенными свойствами.
Е320 и Е321 ингибируют мутагенный эффект бензо(а)пирена в культивируемых клетках млекопитающих.
Е324 с дозовой зависимостью снижает и полностью устраняет повреждающее действие циклофосфана на клетки костного мозга и сперматогонии млекопитающих.
Достаточно сведений об антимутагенности аскорбиновой кислоты, эффективно снижающей генотоксическое действие лекарства циклофосфамида и инсектицида диметоата, пестицидов эндосульфана, фосфомедона, манкозеба, а также антиамебного препарата дийодгидроксихинолина и бензо(а)пирена.
Витамин Е снижает число хромосомных повреждений, индуцированных бензо(а)пиреном и блеомицином.
Витамин А снижает мутагенность афлатоксина В1, циклофосфамида метилнитрозамина, бензо(а)пирена, лекарства клофаземина.
2. Ароматизаторы.
Сведения о результатах исследований антимутагенных свойств ароматизатора коричного альдегида обобщены ранее.
Испытания ванилина показали, что этот ароматизатор снижает мутагенное действие метилметансульфоната и митомицина С в экспериментах на дрозофиле и этилнитрозомочевины в экспериментах на мышах.
Кумарин оказался способен ингибировать у мышей мутагенную активность бензо(а)пирена.
3. Красители.
Антимутагенными свойствами обладают красители природного происхождения куркумины (Е160): куркумин (E160i) и турмерик (Е 160ii). Первый ингибирует генотоксические эффекты конденсатов табачного дыма. Второй раздельно или в сочетании с куркумином - мутагенные эффекты бензо(а)пирена.
Рибофлавин (Е101i) ингибировал мутагенный эффект бензо(а)пирена и 2-ацетиламинофлуорена.
Исследование ?-каротина (Е160а) показало, что он способен снижать мутагенность бензо(а)пирена и циклофосфамида. Каратиноидные красителирена и циклофосфамида. Каратиноидные красители Е160а и Е160е снижают мутагенные эффекты циклофосфамида и диоксидина у мышей.
Другие пищевые добавки и витамины.
Были установлены антимутагенные свойства подсластителя аспартама (Е951). Это соединение эффективно снижало мутагенные эффекты диоксидина и циклофосфамида.
Витамин В6 проявил антимутагенные свойства по отношению к митомицину С и нитрохинолиноксиду, но был не эффективен в отношении воздействия циклофосфамида, нитрозогуанидина и метилмочевины.
Витамин В12 уменьшал количество хромосомных повреждений у мышей, зараженных вирусом кори.
Фолиевая кислота дозо-зависимо снижала индукцию микроядер под влиянием метотрексата в клетках костного мозга мышей.
Таким образом, сегодня имеется достаточно большое количество сведений, демонстрирующих наличие у пищевых добавок, с одной стороны, мутагенных и комутагенных свойств, с другой стороны, - антимутагенной активности.
Обращает на себя внимание тот факт, что в ряде случаев одно и то же вещество может демонстрировать все три вида активности. Последнее особенно характерно для антиоксидантов и может быть связано с присущей этим соединениям инверсией эффектов, выражающейся в концентрационно- или дозо-зависимой смене антиоксидантного действия на прооксидантное и, соостветственно, антимутагенного на мутагенное или комутагенное.
Необходимость изучения мутагенной активности пищевых добавок, очевидно, вытекает из рекомендаций ВОЗ и совпадает с мнением отечественных авторов, указывавших ранее, что «... безопасность и качество продуктов питания - один из основных факторов, определяющих здоровье нации и сохранение ее генофонда».
Наличие у ряда пищевых добавок мутагенных и комутагенных свойств позволяет ставить под сомнение целесообразность их дальнейшего применения. В то же время сведения о наличии у них генотоксической активности получены в разрозненных экспериментах, не связанных единой методологией, принятой для оценки мутагенной активности химических соединений. Не останавливаясь на ее подробном анализе, отметим, что сегодня общепринята практика комплексного, предусматривающего применение набора разных методов, изучения мутагенности активности химических соединений, а также выработаны оптимальные алгоритмы оценки совокупности полученных данных и их экстраполяции на человека. Существуют научно обоснованные параметры, определяющие выбор методов исследования, доз, способов и режимов использования вещества в экспериментах по оценке его мутагенных свойств. Особенно тщательно и полно методология исследования на мутагенность разработана в области фармакологии, поскольку оценка мутагенной активности является необходимым условием внедрения лекарственных средств в практику. Вышеизложенные сведения позволяют обоснованно полагать, что систематическая и комплексная система оценки мутагенной активности пищевых добавок является ныне насущной необходимостью и может выполняться на основе методологии, принятой в доклинических фармакологических исследованиях по безопасности лекарств, как это рекомендуется ВОЗ.
Отдельного анализа заслуживают сведения об антимутагенных свойствах некоторых пищевых добавок. Их наличие открывает перспективы разработки пищевых продуктов, применение которых может значительно снизить мутагенное давление факторов среды на наследственность человека. Считается, что это чрезвычайно перспективное направление для теоретических и прикладных исследований. Однако его реализация наталкивается сегодня на недостаточную разработанность методологии подобного рода исследований и внедрения пищевых продуктов с антимутагенными свойствами. Большинство возникающих проблем связано с вопросами правомерности экстраполяции данных экспериментальных исследований на человека, а также инверсией и специфичностью эффектов многих пищевых антимутагенов.
Таким образом, сегодня имеется настоятельная необходимость внедрения в систему изучения безопасности пищевых добавок методов оценки их мутагенной и комутагенной активности и необходимые предпосылки для дальнейшей теоретической и практической разработки подходов к использованию антимутагенных пищевых добавок в качестве пищевых хемопревентеров мутагенных воздействий на человека.
Рис. 1 - Схема расположения хромосом в клетке. Одним из возможных результатов действия мутагенов в организме человека являются изменения структуры хромосом. Хромосо́мы (др.-греч. χρῶμα — цвет и σῶμα — тело) — нуклеопротеидные структуры в ядре эукариотической клетки, в которых сосредоточена бо́льшая часть наследственной информации и которые предназначены для ее хранения, реализации и передачи.
Современные исследования показывают, что пищевые продукты могут содержать как генотоксиканты, представляющие опасность для наследственности человека, так и антимутагены, способные увеличивать устойчивость человека к генотоксическим влияниям средовых факторов.
Мутагены могут попадать в продукты питания из внешней среды, образовываться при термической обработке и при хранении пищи. Однако сведения об этих процессах и контроль за ними, очевидно, недостаточны, как и данные о мутагенных свойствах пищевых добавок различного назначения и некоторых естественных компонентов пищи. Ввиду этого необходим развернутый анализ методических и методологических аспектов работы по обеспечению генетической безопасности пищи.
С другой стороны, в последние годы выявлено довольно много природных и синтетических соединений, способных ослаблять мутагенные эффекты. Создание пищевых продуктов, включающих антимутагены, представляет несомненный научный и практический интерес. Основная проблема, которую следует решать на этом пути, - выбор адекватных рецептур для разных групп населения и профилактики повреждающего действия мутагенов с разными механизмами действия. Одно из возможных направлений этой работы - выявление новых пищевых антимутагенов и изучение антимутагенных свойств уже применяющихся биологически активных добавок, витаминно-минеральных комплексов и готовых продуктов, обогащенных антимутагенными биокорректорами.
Таким образом, сегодня в области пищевой токсикологии формируются два новых направления исследований. Первое предусматривает раннее выявление пищевых генотоксикантов и предупреждение контакта с ними человека, второе - разработку пищевых продуктов, способных увеличивать устойчивость человека к воздействиям средовых генотоксикантов.
Основные положения о медицинской значимости индуцированного мутагенеза были сформулированы в 1960-1970-х гг. Большинство последующих исследований в этой области сфокусированы на оценке мутагенных свойств средовых факторов различной природы. Были предложены и отработаны методические и методологические принципы генетического скрининга химических мутагенов и оценки мутагенной активности и генетической безопасности применения вновь синтезированных ксенобиотиков. Особое внимание уделялось лекарственным средствам и пестицидам. Гораздо меньшее количество работ было посвящено оценке мутагенных свойств других повседневных средовых факторов, в частности пищевых компонентов. Однако полученных результатов оказалось достаточно для заключения Международной организации по исследованию канцерогенного риска и ряда авторитетных авторов о том, что пища является источником сложной смеси мутагенов и канцерогенов различной природы. Главенствующее положение среди них занимают микотоксины, нитрозосоединения, нитроарены, растительные (прежде всего пиролизидиновые) алколоиды, гетероциклические амины, флавоноиды, фурокумарины, хинолиновые и хиноксалиновые производные, отдельные ароматические углеводороды.
Возможно несколько принципиально различных путей попадания потенциальных мутагенов в пищу.
1. Они могут быть аккумулированы из внешней среды в процессе жизнедеятельности растений и животных. Известно, что широкое распространение в биогеоценозах имеют соли металлов и пестициды. Несколько десятков неорганических соединений накапливаются в объектах растениеводства и животноводства, загрязняя пищевые продукты. Ртуть аккумулируется в организме рыб, из почвы в овощи переходит до 37% марганца, до 32% меди, до 41% цинка, до 10% никеля. В зерновых и картофеле накапливаются соединения кадмия, никеля, свинца, цинка, хрома, кобальта и др. Ряд неорганических контаминантов демонстрирует в про- и эукариотических тест-системах мутагенную и/или ДНК - повреждающую активность в концентрациях, превышающих физиологические значения. Среди них соединения цинка, кобальта, кадмия, бериллия, ртути, свинца, молибдена, никеля, хрома, мышьяка, меди, железа и др. Перечисленные соединения диссоциируют с образованием двухвалентных катионов, способных прямо взаимодействовать с ДНК, или имеют в структуре элементы переменной валентности (переходные элементы - Mo, Hg. Fe, Cu, Mn, Cr, Ni, Co и др.) и, следовательно, обладают потенциальной способностью к индукции окислительных повреждений ДНК.
Широкие исследования показали, что мутагенными свойствами обладает не менее половины из 230 тестированных пестицидов. Наиболее ярко они выражены у этилендибромида, гидразина, параквата, а также отмечены in vivo у эндосульфана, манкозеба, фосфорорганических и некоторых других пестицидов. Их аккумуляция в пищевых растениях и остаточные количества в продуктах питания могут представлять генетическую опасность для человека, что подтверждено прямым цитогенетическим обследованием лиц, профессионально контактирующих с пестицидами.
В растениях и животных могут накапливаться и другие потенциально мутагенные соединения или соединения, способные образовывать мутагены в организме человека. Например, нитраты, накапливающиеся в растениях при внесении в почву азотистых удобрений, взаимодействуют с вторичными или третичными аминами с образованием мутагенных нитрозоаминов в кислом содержимом желудка человека. Взаимодействие нитрата натрия с L-триптофаном в аналогичных условиях приводит к возникновению мутагенного производного пропионовой кислоты, с гербицидами, являющимися производными мочевой кислоты, - к образованию их мутагенных нитрозопроизводных. Не исключено также образование потенциально мутагенных соединений в процессе переработки доброкачественной (не содержащей мутагенов или их предшественников) пищи в желудочно-кишечном тракте. В тесте Эймса и на фибробластях человека показано присутствие в фекалиях здоровых людей мутагенных фекапентенов (конъюгированные эфиры липидов).
Следует также упомянуть, что мутагенную опасность для человека могут представлять остаточные количества препаратов, используемых для стимуляции роста и лечения животных, которые могут переходить в продукты питания человека. Например, транквилизаторы азоперон и ацепрамазин, используемые при производстве мяса, мутагенны в тесте Эймса; диоксидин, применяемый в ветеренарии в качестве антимикробного соединения, мутагенен в эукариотических тестах.
2. Пищевое сырье может быть загрязнено мутагенами при хранении. Например, в результате накопления переокисленных соединений липидов, мутагенность которых хорошо известна, или в результате поражения плесниевыми грибами - продуцентами мутагенных микотоксинов.
Мутагенные свойства одного из микотоксинов - афлатоксина В1 выявлены в исследованиях на самых разных биологических объектах, включая обезьян. Минимальная генотоксическая доза этого вещества, установленная в экспериментах на китайских хомячках, весьма незначительна - 0,1 мкг/кг. При этом увеличение уровня спонтанного мутирования после однократного введения этого соединения обезьянам сохраняется на протяжении почти двухлетнего периода наблюдений. Афлатоксин В1 относится к группе бисфураноидных токсинов. Однозначно установлены мутагенные свойства других соединений этого ряда, имеющих двойную винил-эфирную связь с терминальным фурановым кольцом: афлотоксины С1 и Ml, О-метилстеригматоцистин и стеригматоцистин. Также имеются сведения о мутагенных свойствах других микотоксинов: патулина, зеараленона, охратоксина А.
Показано образование мутагенов 1-(2-фурил)-пиридо(3,4-b)индола и 1-(2-фурил)-пиридо(3,4-b)индол-3-уксусной кислоты при смешивании и совместной 60-дневной инкубации при 37°С L-триптофана и L-аскорбиновой кислоты. По мнению авторов, это может свидетельствовать о возможности образования мутагенов при хранении пищи, содержащей указанные естественные компоненты.
3. Мутагены могут образовываться в процессе термической Обработки пищевого сырья. Воздействие открытого огня, копчение и выпекание приводят к образованию и накоплению в пищевых продуктах мутагенных полициклических ароматических углеводородов, прежде всего бензо(а)пирена; поджаривание или проваривание продуцируют полициклические ароматические углеводороды, нитрозамины, аминоимидазоазарены, гетероциклические амины и другие мутагены. Показано, что нагревание рыбных продуктов до 100-220°С в течении 15 минут приводит к образованию мутагенных 2-амино-3,8- диметилимидазо(4,5-f)хиноксалина и 2-амино-3,4,8- триметилимидазо(4,5-f)хиноксалина. Пирролизаты фосфолипидов, образующиеся при нагревании до 500-700°С, обладают мутагенными свойствами, подобная активность выявлена у продуктов пирролиза глутаминовой кислоты и других аминокислот. Холестерин, окисляясь при хранении или приготовлении пищи, может также приобретать мутагенные свойства.
4. В пище имеются мутагены естественного происхождения. Некоторые флавоноиды демонстрируют мутагенную активность, а витамины С, Е, А - мутаген-потенциирующие эффекты. Саговник, употребляемый в пищу, содержит мутаген естественного происхождения - циказин. В экспериментах на лимфоцитах человека показано, что кофе, помимо кофеина, содержит и другие мутагенные факторы. Кофеин в целом ряде исследований на про- и эукариотических тест-системах демонстрировал мутагенные и мутаген-потенциирующие свойства.
Известно более 200 растений, содержащих соединения, обладающие мутагенными эффектами.
Кроме того, определенную мутагенную опасность могут представлять пищевые добавки, используемые в качестве консервантов, ароматизаторов, красителей, подсластителей, загустителей и пр.
Консерванты - сорбиновая кислота и ее соли, добавляемые в соки, маргарин, сгущенное молоко и т.п., индуцируют генные и хромосомные мутации, а также СХО в культивируемых V79 клетках китайского хомячка. Известны сведения о мутагенной активности консерванта нитрата натрия и бактериального ингибитора для вин и соков бисульфита натрия, а также широко используемого сахарозаменителя - сахарина. Проверка на бактериальных тестах 65 коммерческих пищевых ароматизаторов выявила мутагенную активность у препаратов лука и чеснока, у ряда пищевых азокрасителей, содержащих бензидиновые или нитрогруппы, бензенамины. В частности, в тесте Эймса мутагенную активность продемонстрировали основной красный, метиловый красный судан IV, метиловый оранжевый, конго красный, ализариновый красный В, эриохром, триптофановый синий, синий Эванса и др. Из корней Rubia tinctomm, используемых в качестве сырья для получения пищевых красителей, выделено девять различных антрахиноновых производных, обладающих мутагенными свойствами.
Значительное внимание было уделено изучению мутагенных свойств различных антиоксидантов, применяемых в качестве консервантов пищевых продуктов. Многочисленные исследования с использованием про- и эукариотических тестов показали мутагенные свойства бутилокситолуола и особенно бутилоксианизола.
Приведенные примеры однозначно указывают на необходимость широких исследований, направленных на оценку мутагенных свойств пищевых продуктов, вспомогательных пищевых компонентов, распространенных пищевых добавок, а также роли отдельных технологий в возникновении мутагенов в готовых продуктах, произведенных из доброкачественного сырья. Однако именно оценка мутагенных свойств является наименее разработанным вопросом в области теоретической и практической токсикологии. Согласно рекомендациям ВОЗ, в пищевой токсикологии можно использовать методологии изучения мутагенности, сложившиеся в смежных областях, например в сфере фармакологии, где необходимость ипытания новых лекарств на мутагенность определена директивно и разработаны необходимые методические и методологические подходы, позволяющие эффективно решать эту проблему. Однако в перспективе это не снижает актуальности разработки методологии исследования мутагенности в области пищевой токсикологии.
Важно подчеркнуть, что главной мерой борьбы с индуцированным мутагенезом и его отдаленными патогенетическими последствиями является предупреждение контакта человека с потенциальными мутагенами. В этой связи представляется, что в области изучения мутагенности пищевых продуктов следует выделить две тесно взаимосвязанные задачи.
Первая задача - предупреждение потребления продуктов, содержащих потенциально мутагенные соединения. Ее решение методами генетического мониторинга представляется невозможным из-за чрезвычайно большого объема необходимых исследований. Поэтому в этом случае целесообразно применение менее дорогостоящих и менее трудоемких методов химической детекции потенциально опасных веществ в рамках санитарно-гигиенического контроля качества. Например, после выявления мутагенных и канцерогенных свойств афлотоксина В1 и других микотоксинов, загрязняющих пищу, достаточно иметь надежные аналитические способы их идентификации и препятствовать распространению загрязненных продуктов без дополнительных генетических исследований.
Вторая задача - изучение генотоксических свойств наиболее распространенных дополнительных компонентов: пищевых добавок, которых насчитывается около 2.5 тысяч, наиболее часто встречающихся загрязнителей и необязательных компонентов пищи, возникающих при термических воздействиях, с тем, чтобы иметь необходимую базу данных для направленного выявления потенциальных мутагенов в пищевых продуктах методами аналитической химии. Эта задача представляется достаточно сложной прежде всего по вопросам определения первоочередности тестирования, выбора тест-объектов исследований, доз, способов и схем применения испытуемых соединений и продуктов, антагонизма и синергизма действия пищевых компонентов с мутагенами, повседневно воздействующими на человека (полициклические углеводороды, хиноны и пр.). Недостаточное внимание к указанным вопросам имеет следствием получение неоднозначных результатов и значительно затрудняет меры, направленные на предупреждение применения потенциального мутагена. Например, среди нескольких десятков работ, посвященных изучению мутагенности сахарина, имеются как подтверждающие, так и отрицающие наличие у него мутагенных свойств. Подобное положение определяет длительность и бесплодность многолетней дискуссии о возможности и потенциальной опасности его использования в качестве пищевого сахарозаменителя.
Существенное значение имеет также проблема адекватной трактовки полученных данных. Выше было указано на существование результатов, демонстрирующих мутагенные свойства ароматизирующих компонентов лука и чеснока на бактериях. С одной стороны, эти данные свидетельствуют о генетоксическом потенциале этих ароматизаторов, с другой - хорошо известны бактериологические свойства компонентов указанных растений. Следовательно, выявленные мутагенные эффекты могут быть биоспецифичны для микроорганизмов, что не позволяет однозначно экстраполировать данные о мутагенности ароматизаторов чеснока и лука на человека. Аналогичная ситуация прослеживается с распространенными загрязнителями среды и, возможно, пищевых продуктов - пероксиацетилнитратами, возникающими в результате взаимодействия фотохимически перекисленных органических продуктов с оксидами азота. Эти соединения демонстрируют мутагенные свойства в бактериальных тест-системах, но не у эукариот in vivo. В этой связи следует указать, что большинство указанных работ выполнено на микробиологических объектах, поэтому очевидно, что для повышения надежности экстраполяции сведений о мутагенных свойствах пищевых продуктов и их компонентов следует продолжить их исследования с использованием в качестве тест-систем высших организмов при пероральном многократном введении испытуемых соединений в дозах, реально потребляемых человеком и, как минимум, превышающих их в десять раз. Очевидно, что при выявлении мутагенной активности пищевого компонента в тестах, позволяющих надежно экстраполировать полученные данные на человека, выявленный мутагенный агент должен устраняться из рецептур пищевых продуктов и заменяться немутагенным аналогом. Представляется, что в первую очередь следует детально оценить мутагенные свойства пищевых добавок и загрязнителей, поскольку уже было показано, что некоторые из них обладают мутагенными свойствами.
Наряду с развитием работ по обеспечению генетической безопасности пищевых продуктов в последнее время активно изучаются вопросы влияния веществ, содержащихся в пище, на мутагенные эффекты средовых ксенобиотиков. Это чрезвычайно важная проблема, поскольку очевидно, что современная среда обитания агрессивна по отношению к человеку и содержит большое количество мутагенов химической и физической природы, устранить которые невозможно. Более того, по существующим прогнозам мутагенное давление внешних факторов будет все более увеличиваться. Возможное средство борьбы с этим явлением - использование соединений-антимутагенов, способных снижать или устранять мутагенные эффекты средовых факторов.
Сегодня формируются три направления практического использования антимутагенов. Во-первых, разрабатываются фармакологические средства защиты генетических структур от мутагенных воздействий. Во-вторых, исследуя влияние различных (в подавляющем большинстве растительных) пищевых продуктов на индуцированный мутагенез. В-третьих, идет интенсивное изучение возможности использования отдельных пищевых добавок или компонентов в качестве превентеров (chemopreventers), обладающих профилактическими, в частности антимутагенными, свойствами. Создание пищевых продуктов, обогащенных антимутагенными компонентами, имеет большие перспективы не только для профилактики увеличения генетического груза, но также потому, что антимутагены рассматриваются как агенты, предупреждающие индукцию и развитие злокачественных новообразований.
Известно более 25 различных классов химопревентеров, содержащихся практически во всех типах пищи. Сведения о них обобщены и представлены в таблице 1.
Таблица 1 Пищевые продукты с наиболее значимыми химопревенторами
Тип пищи |
Химопревенторы |
Фрукты
|
Витамины, флавоноиды, полифенельные аминокислоты,волокна, каротиноиды, монотерпиноиды (d-лимонин)
|
Овощи
|
Витамины, флавоноиды, растительные фенолы, волокна, хлорофилл, алифатические сульфиды, каротиноиды, ароматические изотиоционаты, растительные кислоты, дитиолтионы, кальций
|
Злаки
|
Волокна, токоферолы, растительные кислоты, селен
|
Мясо, рыба, яйца, птица
|
Конъюгированные изомеры линолеиновой кислоты, витамины А и Е, селен
|
Жиры и масла
|
Жирные кислоты, витамин Е и другие токоферолы
|
Молоко
|
Ферментированные продукты, кальций, свободные жирные кислоты
|
Орехи, фасоль, зерно
|
Полифенолы, волокна, витамин Е, растительные кислоты, кумарины, протеины
|
Пряности
|
Кумарины, куркумин, сизаминол
|
Чай
|
Растительные фенолы, эпигаллокатехины
|
Кофе
|
Полифенольные кислоты, дитерпены, меланоиды
|
Вино
|
Флавоноиды
|
Вода
|
Селен
|
Не останавливаясь на многих эффектах химопревентеров, полезных для здоровья человека, укажем, что многие из них в эксперименте снижают повреждающее действие средовых мутагенов.
Антимутагенные свойства имеют многие соединения, поступающие с пищей: растительные пищевые волокна, пигменты и флавоноиды (рутин, кверцетин, мирацетин), витамины С, Е, А, β-каротин, экстракты ряда культурных и дикорастущих растений (зеленого и черного чая, капусты, зеленого перца, баклажанов, яблок, лопуха, лука, имбиря, мяты и др.), многочисленные синтетические соединения, применяющиеся в качестве пищевых добавок: бутилокситолуол, бутилоксианизол, пропилгаллат, этоксихин).
Известны факты, свидетельствующие о снижении мутагенных эффектов под действием йогуртов и соков различных фруктов и овощей. В исследованиях института фармакологии были показаны антимутагенные свойства подсластителя аспартама и естественного компонента пищи убихинона.
Отдельные соединения, являющиеся естественными компонентами пищи, способны ингибировать непосредственно эффекты пищевых мутагенов. Показано, что казеин в микробиологических тест-системах обладает эффективной антимутагенной активностью и снижает генотоксические эффекты азида натрия, N-нитрохинолин-1-оксида и особенно хорошо бензо(а)пирена, N-метилнитрозомочевины, нитрозированного 4-хлориндола, различные флавоноиды ингибируют мутагенность гетероциклических аминов.
Витамины С и Е уменьшают эндогенное образование мутагенных нитрозопроизводных, что по мнению отдельных авторов открывает перспективу профилактического использования этих соединений за счет увеличения потребления овощей и фруктов или продуктов, обогащенных пищевыми добавками, содержащими эти компоненты.
В результате исследований выявлены вещества, действующие, как антикластогены в культурах клеток человека и животных:
Антиоксидантные ферменты, Растительные фенолы, Селен, β-каротин, Селенцистеин, Новобиоцин, Интерферон, Стрептовитацин, Спермин, Циклогексимид, Хлорамфеникол, Таннины, Ретинол, Витамин С, Витамин Е, L-цистеин, Цистеамины, Гомоциклические тиолактоны, N-ацетилцистеин, Тиолы, Унитиол, Маннитол, Цистафос, Гаммафос, Амилобарбитан, Индометацин, Полиамины, Бутилгидроксианизол (ВНТ), Бутилгидрокситолуол (ВНА).
Кластогены (clastogen) [греч. clastos — разбитый и genes — порождающий, рождающийся] — факторы (обычно химические вещества), обусловливающие появление хромосомных аберраций.
По механизмам защитного действия данные пищевые антимутагены скорее всего полифункциональны и могут оказывать защитный эффект сразу по нескольким описанным ранее механизмам:
Вместе с этим большая часть работ по антимутагенезу выполнена с применением микробиологических тест-объектов, что значительно снижает прогностическую ценность выявленных результатов для высших животных и человека. Исследования антимутагенных свойств химических соединений предпочтительнее проводить на млекопитающих, так как в этом случае оцениваются не только прямые, например десмутагенные, эффекты антимутагенов, но также их защитное действие за счет прямого и опосредованного центральными механизмами влияния на специфические системы метаболизма, антиоксидантную, иммунную и детоксицирующую системы. Данные, полученные на млекопитающих, с высокой надежностью могут быть экстраполированы на человека.
Таблица 2 Антимутагенность некоторых пищевых веществ в экспериментах in vivo*
Вещество
|
Мутаген
|
Тест-система
|
Витамин А
|
Бензо(а)пирен Циклофосфан
|
Мыши, МЯ Мыши, МЯ
|
β – каротин
|
Рентгеновское облучение Циклофосфан Метилметансульфонат бусульфан
|
Мыши, МЯ Мыши, ХрА Китайские хомячки, ХрА
|
Витамин С
|
Пестициды: Эндосульфат, Манкозеб, Фосфамедон "Рогор" Циклофосфан Хром Дийодогидроксихинолин
|
Мыши, ХрА Мыши, ХрА Кролики, МЯ Морские свинки Мыши, МЯ
|
Витамин Е
|
Бензимедазол Рентгеновское облучение
|
Мыши, ХрА Дрозофила
|
Поливитамины
|
γ - облучение
|
Мши ХрА
|
Пищевые антиоксиданты: ВНТ и ВНА, этоксихин
|
Циклофосфан
|
Мыши, ХрА
|
Флавоноиды: флавон и флавонол байколинаты
|
Бензо(а)пирен Фотрин, диоксин
|
Мыши, МЯ Мыши, ХрА
|
Растительные фенолы
|
Бензо(а)пирен
|
Мыши, ХрА
|
Хлорофиллин
|
ТиоТЭФ Диметилнитрозоамин
|
Китайские хомячки, ХрА Дрозофила
|
Ванилин
|
Митомицин С
|
Дрозофила
|
Мочевая кислота
|
Циклофосфан
|
Мыши, МЯ
|
Аспартам
|
Диоксидин, циклофосфан
|
Мыши, ХрА
|
Убихион
|
Диоксидин, фотрин, циклофосфан
|
Мыши, ХрА
|
Кумарин и его производные
|
Бензо(а)пирен Диоксин
|
Мыши, МЯ Мыши, ХрА
|
*Примечание к таблице ХрА - метод учета хромосомных аббераций, МЯ - метод учета микроядер.
Хромосомные аберрации – различные изменения структуры хромосом (нехватки, транслокации, инверсии, дупликации). Иногда под хромосомными аберрациями подразумевают весь комплекс нарушений генома на уровне отдельных хромосом.
Микроядро - в цитологии фрагмент ядра в эукариотической клетке, не содержащий полного генома, необходимого для ее выживания. Обычно микроядра образуются в результате неправильного хода клеточного деления или фрагментации ядра в процессе апоптоза.
|
Обращает внимание, что исследования антимутагенных свойств данных пищевых соединений in vivo весьма немногочисленны и выполнены с использованием достаточно узкого круга индукторов мутагенеза. Т.е. следует констатировать очевидную недостаточность сведений об антимутагенах in vivo, что позволяет рассматривать изучение их эффектов на высших организмах как новую сферу исследований.
В этой области, имея в виду предложения о практическом использовании антимутагенов, важно выделить несколько проблем.
Во-первых, проблема высокой избирательности действия. N-ацетилцистеин, например, снижает индукцию бензо(а)пиреном микроядер в печени и легких крыс, но не влияет на аналогичную активность диметилбензантрацена в клетках костного мозга мышей. Даже в экспериментах на одних и тех же объектах in vitro, заведомо менее сложных, чем системы in vivo, антимутагены избирательно ингибируют эффекты одних повреждающих факторов и неэффективны по отношению к другим мутагенным соединениям. Например, мирцен в культуре V79 концентрационнозависимо ингибирует образование СХО под действием циклофосфамида и афлотоксина В1, но не бензо(а)пирена и бензо(а)антрацена.
Во-вторых, часто отмечается сложная дозовая зависимость антимутагенных эффектов, зависимость защитного эффекта от дозы и типа индуктора мутагенеза, выбранного объекта исследования и пути введения исследуемого вещества.
В-третьих, практически все антимутагены, уменьшая эффекты одних, потенциируют мутагенное действие других ксенобиотков, а при определенных условиях обладают собственным мутагенным потенциалом. Например, каротиноиды - прекрасные антиоксиданты и за счет этого обладают антимутагенным действием, но в ряде случаев оказывают противоположный - мутагенный или мутаген-потенциирующий - эффект вследствие инверсии антиоксидантного эффекта в прооксидантный. Аналогичными свойствами обладают витамины А, С, Е и синтетические антимутагены. Например, известны сведения о мутаген-потенциирующих свойствах витаминов, об антимутагенных и мутагенных свойствах бутилокситолуола (ВНА) и бутилоксианозола (ВАТ).
Следовательно, необдуманное и недостаточно обоснованное использование антимутагенных химопревенторов в качестве элементов продуктов питания может принести вреда не меньше, чем пользы.
Строго говоря, сегодня в доступной литературе нет ни одного примера, позволяющего дать обоснованную рекомендацию по практическому использованию антимутагенов в области пищевой промышленности. Вместе с этим принята практика обогащения повседневных продуктов питания (молоко, соки и пр.) витаминами. Подобный подход оправдан наличием серьезных гиповитаминозов у части населения практически всех регионов России. Однако совершенно неясно, каким образом обогащенные витаминами продукты влияют на процессы индуцированного мутагенеза у лиц, не страдающих недостатком витаминов, и как отражается состояние гипо- и гипервитаминозов на эффектах средовых мутагенов разного типа действия. Например, в исследованиях института фармакологи показано, что как при гиповитаминозе по витамину А, так и при дополнительном пероральном введении этого витамина уровень аберрантных клеток, индуцируемых диоксидином, в костном мозге животных значимо ниже, чем у животных, имеющих сбалансированное питание. В других работах показано, что витамины А, С, Е имеют мутаген-потенциирующие эффекты. Таким образом, даже применение в качестве антимутагенных химопревентеров таких повседневно использующихся соединений, как витамины, требует специального обоснования и изучения.
Можно полагать, что исследование, направленное на разработку пищевого антимутагена, должно строиться таким образом, чтобы можно было охарактеризовать особенности влияния in vivo перспективного антимутагенного химопревентора (в диапазоне доз, возможных к применению) при пероральном введении на эффекты мутагенов различного типа действия, прежде всего на наиболее распространенные мутагены с алкилирующим и прооксидантным типами действия. Изучение влияния вероятного антимутагенного химопревентора на эффекты сложных смесей мутагенов можно выделить как второй гипотетический этап внедрения антимутагена в практику. Наконец, исследования, подтверждающие защитные свойства пищевого продукта, содержащего химопревентор, логично рассматривать как завершающий этап, доказывающий возможность профилактического применения этого продукта.
Важно отметить, что в определенных случаях эффект пищевых мутагенов может быть снижен или устранен на основе изменения технологии приготовления пищевых продуктов. Например, при термической обработке мяса, не содержащего собственных соков, уровень мутагенности готового продукта примерно в 50 раз ниже, чем при обработке в тех же условиях в присутствии мясных соков. Наблюдаемый эффект связан с тем, что последние содержат большое количество креатинина и свободных аминокислот, являющихся субстратом образования мутагенных гетероциклических ароматических аминов. Нанесение пищевых аминокислот триптофана или пролина на поверхность мяса перед его термической обработкой также ингибирует образование мутагенных гетероциклических ароматических аминов. Однако последнее нуждается в проверке, так как в ряде случаев обработка мяса некоторыми свободными аминокислотами, прежде всего пролином, значимо увеличивает мутагенность готового продукта.
Возможна также дезактивация загрязненных продуктов. Кукурузное зерно, содержащее афлотоксин В1, было мутагенным в костном мозге мышей in vivo, но после обработки аммонием теряло повреждающую активность.
Не менее интересны сведения о диетической модуляции ДНК-повреждений у человека. Показано, что при недостаточно калорийных диетах уровень биомаркеров, свидетельствующих об интенсивности окислительных повреждений ДНК, снижен. При низкокалорийной диете, содержащей белки, жиры и углеводы, но в отсутствие фруктов и овощей уровень биомаркеров выше, чем в их присутствии. Аналогичным образом обогащение диеты ненасыщенными жирными кислотами возможно будет иметь протекторное действие по отношению к мутагенным эффектам, поскольку показано, что некоторые из них в культуре клеток китайского хомячка ингибируют кластогенный эффект целого ряда мутагенов.
Следует констатировать, что в настоящее время в области пищевой токсикологии формируются два взаимосвязанных направления обеспечения генетического здоровья населения. Первое связано с предупреждением потребления пищевых мутагенов и уже сегодня может в достаточной степени решаться в рамках технологических, санитарно-гигиенических и генетических подходов. Второе направление имеет целью создание продуктов, компоненты которых способны препятствовать повреждающему действию средовых мутагенных факторов, по существу - это новое поле исследований, не имеющее сегодня устоявшейся методологии и представленное достаточно разрозненными данными. Однако большие группы населения имеют прямой контакт с мутагенами в быту и на производстве, например, в асбесто-цементной промышленности, поэтому разработка и внедрение пищевых антимутагенов имеет большую социальную значимость.
См. также: