Вы смотрите фотографию с сайта - чтобы вернуться на него перейдите по ссылке propionix.ru

Йод и селен для птиц

3. Применение пробиотиков, селена и йода в птицеводстве

п.1 см. по ссылке
п.2 см. по ссылке
литературу см. по ссылке

domashnyaya_ptica_i_dobavki_cinka.jpgВ настоящее время отмечается значительный интерес к применению пробиотиков при выращивании сельскохозяйственной птицы. В научной литературе имеются данные об их успешном применении для повышения резистентности организма животных и птиц (Cox, 1988; Ewans et al., 1988; Mallik et al., 1995; Ноздрин и др., 1997; Бовкун и др., 1998; Карпуть и др., 2000; Литвина, 2000).

Т.А. Кашперова и др. (2000) при изучении эффективности субалина в промышленном производстве цыплят-бройлеров установили, что пробиотик обладает профилактическим действием, антистрессовыми качествами, приводит к нормализации кишечной микрофлоры и улучшению обменных процессов у птицы, повышает сохранность молодняка.

В. Филоненко и др. (2004) отмечают, что пробиотик субтилис оказывает положительное влияние на рост и развитие мясных цыплят и ограничивает накопление у них в кишечнике нежелательной сопутствующей микрофлоры, что повышает их жизнеспособность.

Роль иммунной системы в противоинфекционной защите организма доказана. В отечественной и зарубежной научной литературе появляется все больше данных о прямой и обратной связи иммунной системы с системой интерферона, так как состояние и активность этих систем во многом определяет исход заболевания, характер его течения.

И.М. Карпуть и др. (1996) изучали иммунный статус цыплят-бройлеров в зависимости от содержания в инкубационном яйце защитных факторов и заселения кишечника полезной микрофлорой. Цыплята получали энтеробифидин из бифидобактерий и препарат из лакто-, бифидо- и пропионовых бактерий. После введения препаратов в крови у цыплят увеличивалось количество лейкоцитов, особенно за счет Т-лимфоцитов. Усиливалась фагоцитарная активность макрофагов, стабилизировались уровень иммуноглобулина и гематологические показатели. Энтеробифидин и комплексный препарат из молочно-кислых бактерий при использовании их цыплятам стимулируют местную и общую защиту кишечника.

М.П. Бабина (1998) сообщает, что применение пробиотиков энтеробифидина и бактрила профилактирует у цыплят-бройлеров развитие возрастной иммунной недостаточности, усиливает местную защиту пищеварительного тракта, стимулирует рост и позволяет сократить применение противомикробных препаратов.

Как указывает Драган Жикич (2006), пробиотики, добавляемые в корма, значительно изменяют соотношение видов бактерий и тем самым – процесс пищеварения и иммунитет животных.

Чтобы производить дешевое мясо птицы, необходимы стимуляторы роста, которые позволяют птице проявлять свой генетический потенциал как можно быстрее и эффективнее.

Фармакологическая стимуляция роста является ценным вспомогательным фактором не только увеличения живой массы, улучшения развития, но и  повышения резистентности организма цыплят. Наивысшая эффективность достигается только правильным выбором и точным применением нужных препаратов (Андреева и др., 1987; Антипов, 1989; Экпеньонг, 1990).

Из большого разнообразия биологически активных веществ в животноводстве широко применяют кормовые антибиотики и пробиотики. Они действуют главным образом на микрофлору пищеварительного тракта и обмен веществ, благодаря чему улучшаются процессы расщепления и усвоения питательных веществ кормов.

Однако в последнее время все чаще становится вопрос о необходимости отказа от применения антибиотиков в качестве стимуляторов роста и замены их другими препаратами (Гамко и др., 1999).

При применении антибиотиков в кишечнике полностью нарушается микробиоценоз, процесс его восстановления в кишечнике до нормального состояния протекает в течение нескольких дней, за это время у птицы нарушается физиологический ритм пищеварения, что влечёт за собой снижение резистентности и продуктивности. Введение пробиотиков с кормом и водой способствует быстрому восстановлению микробного пейзажа в пищеварительном тракте птицы и снижению фактора стресса.

Пробиотики довольно часто используют в качестве добавок к комбикормам с повышенным уровнем клетчатки, которую птица, особенно молодая, не способна хорошо переваривать (Федулина и др., 1989). Внесенные в желудочно-кишечный тракт животных с кормом, они разрушают оболочку растительных клеток и делают доступными для усвоения содержащиеся в них питательные вещества (Тараканов и др., 1998).

А. Тихомирова и др. (1993) в своих экспериментах изучали влияние лечебно-профилактического кисло-молочного продукта бифивета, содержащего физиологически активные клетки бифидобактерий, на жизнеспособность и деловой выход молодняка птицы в дозе (1-2) мл на 100 г живой массы. Живая масса опытных цыплят в сравнении с контролем увеличилась на (5-6) %.

И.Г. Пивняк и др. (1998) сообщают о ростостимулирующем влиянии нового пробиотика каротинобактерина на молодняк сельскохозяйственной птицы.

И.А. Егоров и др. (2004) при изучении влияния пробиотика лактоамиловорина на рост цыплят установили, что скармливание молодняку жидкого пробиотика первые 7 дней выращивания обеспечило к 42-му дню повышение живой массы на 2,7 %. При использовании жидкой и сухой форм пробиотика бройлерам в течение 4 недель откорма установлено, что в 42-дневном возрасте масса тела у них была выше в среднем на 5,6 %, сохранность на 2,5 %. Они рекомендуют для стимуляции роста мясных цыплят данный препарат вводить в рацион в количестве 2 л жидкого или 50 г сухого на 1 т корма в течение 28 дней.

Б.В. Тараканов (2004) указывает, что применение лактоамиловорина при выращивании цыплят-бройлеров увеличивает их сохранность на 1,1 %, живую массу – на 7,8 %, выход убойной массы 1-й и 2-й категорий соответственно на 25 и 21 %. Использование данного пробиотика в кормах для гусей увеличивает живую массу птицы в 6-месячном возрасте  на  12,55,  снижает содержание влаги в мясе на 3,3 %, жира на 3, холестерина – на 3,3 %, повышает уровень белка на 5,7 %, что делает гусятину особенно ценной для диетического питания.

Е. Букреева и др. (2000) изучали эффективность использования симбиотического кисло-молочного продукта кефинар в птицеводстве. Установили, что препарат повысил сохранность птицы: в опытной группе она была выше на 3 % по сравнению с контролем; яйценоскость в контроле составила 70,02 %, в группе с кефинаром – 76,17 %. На живую массу перепелок и массу яиц введение в состав кормосмеси пробиотика не оказало достоверного влияния.

Б.Ф. Бессарабов и др. (1996) изучали влияние пробиотиков галлиферма и энтероцида на рост и сохранность цыплят. Авторы установили, что оба препарата оказывают положительное влияние на цыплят, причем лучшие результаты дал галлиферм. Живая масса молодняка была на 34,8 г, среднесуточный прирост – на 0,58 г, сохранность – на 2,6 % выше, чем в группе, получавшей энтероцид.

Бифацидобактерин обладает ростостимулирующим эффектом. Так, сохранность бройлерных цыплят во время испытаний повышалась на 10,1 %, а их масса на день убоя превышала массу контрольных на 6,5 % (Субботин и др., 1998, 1998).

По данным А.И. Сканчева и др.(2005), применение пробиотика интестевит и биокорма Пионер при выращивании цыплят-бройлеров дает возможность снизить количество применения антибиотиков, повысить резистентность организма птицы и получить более высокую экономическую эффективность производства птицеводческой продукции.

Б.В.Тараканов и др. (2005, 2007, 2008) сообщают, что пробиотик микроцикол оказывает существенное воздействие на организм птицы, улучшает качество мяса, обеспечивает повышение прироста живой массы и сохранности мясных цыплят и гусей. Средняя живая масса одного бройлера увеличилась на 0,44 кг, сохранность на 6,9 %. У гусей за 6-месячный период выращивания повысилась сохранность на 2,9 %, прирост живой массы опытной птицы – на 4,86 %.

 И.А. Егоров и др. (2007) рекомендуют пробиотик терацид-С для повышения сохранности, прироста живой массы и титров антител против ньюкаслской болезни у бройлеров при минимальном уровне его ввода в полнорационные комбикорма без антибиотиков до 38-дневного возраста. Доза – 5 г на 1 кг корма или 12,5 х 108 КОЕ.

В промышленном птицеводстве все чаще находят применение  комбинированные пробиотики, изготовленные на основе различных микроорганизмов.

Н.И. Федулина и др. (1989) в экспериментальном хозяйстве ВНИИРГЖ в течение 3 лет проводили опыты на цыплятах-бройлерах, которым с 8-10-дневного возраста скармливали целлобактерин, изготовленный на основе трех физиологических групп микроорганизмов, взятых из рубца жвачных животных. Результаты эксперимента: суточный прирост живой массы цыплят-бройлеров находился в пределах (31,5-34,0) г, а в контроле – 28,3. Авторы дают заключение, что целлобактерин можно использовать как добавку к комбикормам, в которых значительную долю составляют компоненты растительного происхождения.

Р. Жук и др. (1992) испытывали ростостимулирующий эффект лактина (пробиотик из лактобацилл и стрептококков) на ремонтном молодняке яичных кур, цыплятах-бройлерах кросса Таврия, индюшатах белой широкогрудой породы и линейных утятах кросса Медео. Самое эффективное действие лактина проявляется при скармливании молодняку всех видов сельскохозяйственной птицы, за исключением индюшат, в течение 4 недель в дозе 2 г на 1 кг комбикорма. Индюшатам препарат нужно скармливать по 0,2 г на 1 кг комбикорма одну неделю.

Ю.П. Фомичев и др. (2003), изучая эффективность использования тококарина на молодняке птицы, установили, что среднесуточные приросты у цыплят-бройлеров увеличиваются на 9,6 % в сравнении с аналогами из контроля.

По мнению Ш.А. Имангулова и др. (2004), ферментативные пробиотики целлобактерин и целлобактерин Т, добавляемые к комбикорму из расчета 1 кг/т, не уступают ферментным препаратам. Ими можно полностью заменять ферменты и обычные пробиотики в рационах птицы.

И. Тменов и др. (2006) при изучении скармливания пробиотика из соевого молока и бифидобактерий суточному молодняку кросса Смена-2 установили, что живая масса опытных бройлеров в 7-недельном возрасте была выше, чем у контрольных, на 244 г, сохранность – на 3 %. По мнению авторов, включение в рационы цыплят-бройлеров 2 % от массы корма пробиотической подкормки дает максимальный эффект.

Б.В. Тараканов и др. (2008) при изучении влияния пробиотиков на выводимость гусиных яиц на птицефабрике «Спутник» Оренбургской области установили, что при обработке инкубационных яиц пробиотиками лактоамиловорином, лактомикроциколом и микроциколом снизилась частота появления тумаков, выводимость повышалась. Максимальная эффективность наблюдалась при использовании лактомикроцикола. Авторы отмечают положительное влияние обработки инкубационных яиц пробиотиками на последующий рост вылупившегося молодняка и рекомендуют с целью повышения вывода, сохранности и последующей продуктивности гусей перед закладкой яиц на инкубацию и при переносе в выводной шкаф обрабатывать их лактоамиловарином или лактомикроциколом из расчёта 7 или 11 г препарата на 1 л воды.

Обобщая литературные данные по применению пробиотиков в птицеводстве, можно отметить, что они широко применяются для стимуляции роста и развития молодняка, улучшают качество получаемой продукции, оказывают в ряде случаев противоаллергическое действие, регулируют и стимулируют факторы неспецифической резистентности организма.

В настоящее время известно значительное количество органических и минеральных веществ, обладающих биологической активностью: витамины, гормоны, ферменты, ряд макро- и микроэлементов (Arntzen at al. 1974; Гурьянов, 1995). Эти вещества, используемые в составе кормов или подкормок, стимулируют обменные процессы в организме животных и требуют дозированного применения (Хенниг, 1976; Георгиевский, 1979; Dey, Mukherjee, 1984; Кальницкий, 1985; Вишняков, 1988). Среди них особого внимания заслуживают микроэлементы селен и йод.

До 1957 г. селен и его соединения рассматривались исключительно как токсические для живых организмов вещества, и в настоящее время селен в соответствии с ГОСТ 17.4.1.02 – 83 относится к высокоопасным химическим элементам (Миронова, 2002). Интоксикация происходит главным образом при инъекциях или при скармливании сверхдоз. При селеновом токсикозе увеличивается частота дыхательных движений и сердечных сокращений, наблюдается анемичность кожи и слизистых оболочек, истечение слизи из ротовой полости, алопеция, истощение (Тишков, Войтов, 1989; Banholzer, Heinritzi, 1998). По данным R.L. Arnold, O. E. Olson (1973), селен характеризуется узким пределом допустимых концентраций в корме и в случае превышения этого предела вызывает угнетение роста и понижение продуктивности.

Механизм токсического действия селена, не полностью выясненный, все же более очевиден, чем механизм его биологического действия. Токсические дозы селена блокируют сульфгидрильные группы ферментов тканевых белков, вызывают гипоксию. Видимо, селен в высоких дозах угнетает, а в малых стимулирует активность ферментов, усиливая процессы тканевого дыхания и окислительного фосфорилирования в организме (Кудрявцева, 1974; Мозгов, 1979).

В настоящее время селен в малых дозах признан незаменимым микроэлементом для сельскохозяйственных животных (Болотников, Конопатов, 1987). Многочисленные опыты как отечественных, так и зарубежных ученых подтвердили положительное влияние селена на воспроизводительную функцию животных и жизнеспособность потомства (Алешко, 1971; Кудрявцева, 1974; Cantor, Scott, 1974).

Применение препаратов селена в кормлении приобретает особую актуальность в связи с резким снижением количества животных кормов (основных источников селена), широким использованием продуктов микробиологической промышленности, применением технологий заготовки и подготовки кормов к скармливанию с высокотемпературными обработками [селен начинает улетучиваться из кормов уже при (50-60) оC]. У многих веществ, обладающих канцерогенным действием, обнаружена способность резко увеличивать выделение селена из организма более чем в 20 раз и вызывать значительный дефицит этого элемента даже в случаях поступление в организм в дозах, превышающих обычно рекомендуемые (Дюкарев, Клочковский, Дюкар, 1985).

Наиболее распространенными препаратами селена, используемыми в кормлении животных, являются селенит и селенат натрия.

Селенит  натрия  содержит  селена 45,7 %, селенат натрия – 41,4 %. Доступность селена для птицы из селенита натрия составляет 74 %. Доступность селената для птицы ниже, чем селенита (Кузнецов, Кузнецов, 2001). Селенат натрия – относительно стабильное соединение, он менее вреден для других ингредиентов премиксов и менее токсичен по сравнению с селенитом.

Если селенит всасывается через мембраны щеточной каймы в начальном отделе тонкого кишечника, то селенаты – в средней и каудальной за счет механизмов активного транспорта. Абсорбцию селена из селенита стимулируют цистеин и глутатион, а ингибируют метионин и его аналоги (Кузнецов, 1991).

Селенит натрия кормовой (0,1 %) является препаративной формой селенита натрия с добавлением инертных наполнителей, которые вводят в комбикорм непосредственно перед раздачей и тщательно перемешивают.  Однородность  смешивания  достигает (95-96) %. Низкая концентрация селена по чистому веществу (0,046 %) обеспечивает не только удобство, но и безопасность применения препарата в производстве комбикормов и премиксов.

Синтезированное во Всероссийском НИИ физиологии, биохимии и питания сельскохозяйственных животных (ВНИИФБиП) органическое соединение селена – селенопиран – по ряду критериев не имеет аналогов в мировой практике и выгодно отличается от всех известных ранее органических соединений селена. Токсичность селенопирана ниже, чем всех известных органических соединений селена, и более чем в 100 раз меньше, чем селенита натрия.

В биотехнологическом центре «Оллтек» был получен препарат сел-плекс путем выращивания дрожжевых специфических клеток, синтезирующих селенометионин в контролируемых условиях. Продукт содержит селен преимущественно в составе аминокислот селенометионина (50 %) и селеноцистина (25 %). Общее содержание селена 1000 мг/кг. Селен в составе препарата сел-плекс имеет более высокую доступность, особенно в условиях стрессов, не является окислителем, остается стабильным при температуре 121 °С в течение 30 минут, что позволяет проводить грануляцию при производстве кормов.

Несмотря на огромное биологическое значение селена, он не находил долгое время широкого применения в кормлении птицы. Лишь в отдельных странах его включали в состав комбикормов и премиксов. Между тем большинство кормов, используемых в птицеводстве, не обеспечивает потребности птицы в этом микроэлементе. Обычный хозяйственный рацион содержит (0,03-0,1) мг/кг селена. Однако предложенные разными авторами нормы скармливания птице селена ориентировочны. Не определены также потребности в селене для птицы различного направления продуктивности, а также в отдельные периоды индивидуального развития.

Для восполнения дефицита селена в кормах используют различные источники, из которых наибольшее распространение получили селенит натрия и натрий селенисто-кислый 5-водный. Их дозы (1-2) г на 1 т корма (Шкарин, 2004). Применять селенит натрия молодняку птицы разрешается с первых дней жизни из расчета 1 мг препарата на 10 кг корма (Гробовский, 1973).

После вывода, особенно на 5-й день жизни, концентрация витамина Е в печени цыплят, индюшат, гусей, уток резко падает – более чем в 20 раз. В то же самое время активность глутатионпероксидазы повышается к моменту вывода, что дало основание назвать селен главным постнатальным антиоксидантом. Этот фактор является одним из важных в обеспечении высокой жизнеспособности в течение первых 10 дней жизни цыплят.

Для птицы селенит натрия можно добавлять в питьевую воду. Для этого 10 мг препарата растворяют в 100 л воды и разливают по поилкам в течение (2-4) дней подряд (Дюкарев и др. 1985). В опытах Л.М. Борисовой (1969) применение селенита натрия с водой оказалось более эффективным, чем с кормом. Это, возможно, связано с более равномерным распределением препарата, а также лучшим всасыванием его в желудочно-кишечном тракте. В. Шипилов (2000) предлагает норму ввода селенита натрия кормового для птицы от 100 до 450 г на 1 т комбикорма.

Профилактический и ростовой эффект микродобавок селена к рациону цыплят-бройлеров [(0,2-0,4) мг/кг сухого вещества], особенно на фоне нестабильного липидного питания, наблюдали многие исследователи (Георгиевский, 1970; Цалс, 1972; Нурмухаметова, 1984; Девеча, 1984).

По данным Г.П. Белехова и А.А. Чубинской (1965), положительное действие селена сказывается на предупреждении и лечении экссудативного диатеза у цыплят в количестве 0,08 мг на 1 кг живой массы.

А. Хенниг (1976) минимальную потребность в селене для всех сельскохозяйственных  животных  и  птицы  устанавливает  на  уровне (0,08-0,1) мг/кг, причем эта величина может несколько изменяться в зависимости от концентрации серы в рационе. В некоторых случаях для устранения экссудативного диатеза цыплят необходимы дозы селена выше 0,1 мг/кг корма.

Оптимальным уровнем селена в кормах для птиц С.Н. Касумов (1981) предлагает считать (0,1-0,3) мг/кг, недостаточным – менее 0,1 мг/кг, токсичным – более 3,0 мг/кг. По его мнению, содержание элемента в рационе должно находиться на уровне: для цыплят (0,20±0,05), утят и индюшат (0,25±0,05), кур-несушек – (0,15±0,05) мг/кг корма. В.И. Георгиевским и др. (1985) установлена потребность в селене на уровне 0,06 мг/кг (в виде селенита) для максимального роста и ингибирования перекисного окисления. В то же время добавка 0,1 мг селена к рациону кур с уровнем селена (15-30) мкг/кг увеличивала яйценоскость, повышала выводимость и жизнеспособность молодняка и предотвращала появление экссудативного диатеза. В целом оптимальный уровень селена в кормах 0,1 мг/кг, недостаточный – менее 0,1 мг/кг, токсический – (5,0-8,0) мг/кг.

В.В. Дюкарев, А.Г. Клочковский, И.В. Дюкар (1985) потребность в селене при использовании доброкачественных кормов оценивают в (0,1-0,3) г в 1 т корма. Л.И. Тучемский (1999) определяет потребность в селене для птицы (0,15-0,2) мг/кг корма. Т.М. Околелова и др. (1999) определяют нормы ввода добавок селена в комбикорма для цыплят-бройлеров 0,15 г/т. Минимальный предел, при котором наступает явление токсикоза (селеноза), по В.В. Ермакову и В.В. Ковальскому (1974), 2,5, по Б.Д. Кальницкому (1985) – (3,0-4,0) мг селена на 1 кг сухого вещества корма.

По данным Э. Визнера (1976), А.В. Атлавина и др. (1990), при содержании селена в рационе 5 мг/кг корма снижаются темпы роста, яйценоскость и выводимость цыплят, при 8 мг/кг отмечаются тяжелые патологии у цыплят, а при 10 мг/кг наблюдается полное прекращение выводимости цыплят.

По данным И.А. Девеча (1991), стимулирующим является содержание селена от 0,19 до 5,08 мг/кг сухого вещества корма, токсическим - 7,58 мг/кг. С.Г. Кузнецов (1992) считает токсичным корм, содержащий (7,0-10,0) мг селена на 1 кг сухого вещества.

А.И. Тишков, Л.И. Войтов (1989) установили видовую чувствительность птицы к селениту натрия: наиболее чувствительны к нему индюшата, затем цыплята-бройлеры, утята. Минимальная токсическая доза селенита натрия, способная вызвать изменения в клиническом статусе цыплят-бройлеров, – 1,70 мг/кг, острый токсикоз – (13,76-27,52) мг/кг, хронический токсикоз – (1,70-7,83) мг/кг массы тела в течение 14 суток применения.

Следовательно, при введении препаратов селена в рационы птицы необходимо тщательно соблюдать дозировку и обеспечивать равномерное смешивание их с комбикормом.

В качестве источников йода можно использовать большое количество препаратов, появившихся в последние годы, однако классическими являются йодат кальция – 65,0 % йода, йодат калия – 59,0 % и йодид калия – 76,5 % (Фелтвелл, Фокс, 1983).

Йодистый натрий (NaI) и йодистый калий (KI) – основные соединения йода, применяемые в качестве добавок. Однако эти соединения нестабильны, катализируют процесс их окисления соединения железа, меди и марганца.

Йодид калия легко растворим в воде. Из препарата йод усваивается на (25-35) %. Йодистый калий по сравнению с йодистым натрием более стоек и менее гигроскопичен, поэтому его применяют в зоотехнической практике для предотвращения гипотиреоза.

Соли йода стабилизируют восстановителями, имеющими щелочную реакцию (тиосульфат натрия, двууглекислый натрий, стеарат кальция), так как перекиси и кислоты переводят йод в молекулярную форму. Применение стеарата кальция повышает стабильность йодистого калия в (1,7-1,8) раза и дает возможность увеличивать сроки хранения премиксов почти в 2 раза. Смешивание йодида калия перед введением в премикс с (8-24) % (по массе йодида) природного цеолита позволяет повысить сохранность йода в 3,5 раза, срок хранения премикса – с 4 до 12 месяцев (Кузнецов и др., 1992).

Йодаты калия и кальция меньше разрушают витамины А и Е, чем йодиды, нетоксичны и более стабильны, чем йодид калия или натрия.

В большинстве применяемых подкормок, полисолях, брикетах, комбикормах и препаратах йод не стабилизируется и улетучивается в процессе изготовления и хранения, или соединяется с другими биологически активными веществами и превращается в неусвояемые для организма животных формы (Кузнецов, 1991).

В связи с высокой летучестью йода содержание КI в корме снижается уже через 1 месяц на 25 %, через 2 месяца на 50 %, через 5 месяцев на 78 %, через год – на 90 %. Для стабилизации йодидов в условиях комбикормовых заводов используют тиосульфат, бикарбонат натрия или стеарат кальция. Этот процесс очень трудоемок и затратен (Лебедев, 1990). При стабилизации КI бикарбонатом натрия повышается сохранность йода на (10-12) % в течение первых двух месяцев (Кузнецов, Батаева, Овчаренко и др., 1992).

В настоящее время широко применяется стабилизированный препарат  кайод. Выпускается он в виде таблеток массой (1,0-0,27) г, в которых йода (2,3-6,0) мг. Технология скармливания таблеток различным видам и группам животных неодинакова. Самая простая сводится к индивидуальной подкормке каждого животного или добавлению таблеток к кормам в расчете на группу (Лебедев, 1990). Наиболее современный метод обогащения кормов йодом состоит во введении йодида в состав комбикормов и премиксов в необходимых дозах в сочетании с другими микроэлементами. Этот метод имеет три существенных недостатка.

Первый состоит в постепенном испарении йода из комбикорма во время его хранения или физической, термической и химической подготовки к скармливанию. Второй заключается в образовании плохо усвояемых и вредных соединений с микроэлементами – антагонистами йода: медью и фтором. Третьим недостатком является то, что дефицит йода может возникать в результате введения в состав комбикормов большого количества ценных белковых культур: бобов, сои, гороха, витаминной муки из белого клевера или капусты. Эти культуры содержат гойтрогены (зобогенные вещества), относящиеся к группам тиогликозидов, тиоцианатов, перхлоратов, которые ингибируют усвоение йода (Георгиевский и др. 1979; Дюкарев, Клочковский, Дюкар, 1985).

Помимо индивидуальной дачи и введения в корма таблеток, разработана технология обогащения йодом кормовой соли. Как показали исследования, этот метод является недостаточно эффективным из-за непрочного соединения поваренной соли с йодом (Венедиктов, Ионас, 1979; Гуревич, Жабская, Межвинская, 1953).

С.Г. Кузнецовым (1991) при изучении сохранности 14 соединений йода в составе премикса КС-3 для поросят установлено, что срок сохранения йода зависит от применяемого стабилизатора. Об обеспеченности молодняка свиней этим микроэлементом судили по его содержанию в щитовидной железе, образованию тиреоидных гормонов и экскреции с мочой циклических нуклеотидов (цАМФ и цГМФ). Отмечено, что при добавлении КI в премиксы йод, выделяющийся вследствие высокой химической активности, разрушает некоторые витамины, в частности А и Е, от 21 до 48 %.

Ю.В. Мишанин, М.Ю. Мишанин, А.А. Прядко (2001) изобрели кормовое средство для профилактики селеновой и йодной недостаточности у сельскохозяйственных животных и птиц. Предварительно готовили крахмальный клейстер, спиртовой раствор кристаллического йода в соотношении 1:10, водные растворы йодида калия в соотношении 1:10 и селенита натрия в соотношении 1:5. Затем в охлажденный до (40-50) оС клейстер последовательно добавляли раствор йодида калия и кристаллического йода и смешивали, далее добавляли раствор селенита натрия, перемешивали в течение (20-30) минут, высушивали и измельчали до порошкообразного состояния. Использование крахмального клейстера обеспечивает получение кормового средства со стабилизированным количеством селена и йода за счет обволакивания молекулами крахмала молекул йода и селенита натрия. Использование кристаллического йода обеспечивает хорошую растворимость йодида калия.

При невозможности использования йодистых подкормок в кормовой смеси йодид калия или натрия вводят в питьевую воду в количестве 2,0 г на 100 л воды (Георгиевский, 1970). Добавки соединений йода в корма и питьевую воду увеличивают рост, яйценоскость птицы (Вишняков и др. 1971; Гусаков, Островский, 2002; Евхутич, Лебедева, 2005), оплодотворяемость яиц и выводимость молодняка (Петров, 1963). Оптимизация содержания йода в рационах путем микродобавок йодистых соединений повышала мясную продуктивность кур на (7-37) %, а яйценоскость – на (6-26) % (Егоров, 1973; Кашин, 1987). Обнаружено, что лучше росли цыплята, которые регулярно, начиная с первого дня жизни, получали добавку йодистого калия в составе рациона (Горянов, 1959).

Токсический избыток йода в рационе птицы маловероятен, так как толерантность к данному элементу высокая. При дозах выше оптимальных в 300-1000 раз у кур временно прекращалась яйцекладка и ухудшались инкубационные качества яиц (Георгиевский и др., 1979).

Потребность в йоде зависит от возраста, физиологического состояния и его концентрации в корме. Ориентировочные нормы содержания йода в кормах для удовлетворения физиологических потребностей для птицы – (0,3-1,0) мг/кг сухого вещества корма (Хенниг, 1976; Георгиевский и др., 1979). По данным П.Д. Евдокимова и В.Д. Артемьева (1974), наиболее эффективны следующие дозы йодистого калия: цыплятам – 0,2 мг, курам – 0,5 мг на голову в сутки. По мнению Я.М. Берзиня и В.Т. Самохина (1968), общая потребность птицы в йоде составляет 0,58 мг на 1 кг сухого вещества рациона. Достаточным количеством йода для нормального роста и функции щитовидной железы у цыплят С.И. Вишняков, А.Н. Апухтин и В.С. Иноземцев (1971) считают (0,3-0,4) мг на 1 кг корма.

У птицы, как и у других сельскохозяйственных животных, недостаток йода сказывается, прежде всего, на эмбриональном развитии. Эти нарушения наблюдались в опытах А. Хеннига (1976) при содержании йода в корме менее 0,15 мг на 1 кг корма. Племенным курам требуется йода около 0,5 мг/кг. Рекомендуемые А.М. Венедиктовым и А.А. Ионасом (1979) нормы йода для птицы составляют (в мг на 1 кг сухого вещества рациона): куры – (0,3-1,0), индейки – 1,0, гуси – 1,0 утки – 1,0.

В.В. Дюкарев, А.Г. Ключковский, И.В. Дюкар (1985) рекомендуют вводить в комбикорм 0,7 г йода на 1 т. Ориентировочные рекомендации ВНИТИП по нормам ввода йодистого калия в комбикорма следующие (г/т): куры племенные и промышленных стад – 3,0, бройлеры от 1 до 30 дней и от 31 до 70 дней – 3,0. Л.И. Тучемский (1999) определяет потребность в йоде для взрослых племенных кур – 2,0, молодняка всех видов – (0,4-0,6), а для бройлеров быстрорастущих кроссов – 1,0 мг/кг корма. Признаки недостаточности проявляются при содержании в корме йода менее  (0,2-0,15) мг/кг. Т.М. Околелова и др. (1999) определяют норму ввода йода в комбикорма для цыплят-бройлеров 0,7 г/т.

Исходя из вышеизложенного, можно сделать вывод о том, что йод- и селенсодержащие препараты многочисленны и находят широкое применение в практике кормления всех видов сельскохозяйственных животных. В настоящее время в продаже имеется огромное количество препаратов, имеющих в своем составе селен и йод, с разными коммерческими названиями, однако основными компонентами подавляющего большинства их являются селенит и селенат натрия, селенометионин, селеноцистеин, йодат кальция, йодат калия, йодид калия и йодид натрия.

Не подлежит сомнению влияние йода и селена на интерьерные показатели сельскохозяйственных животных и на их продуктивность. Решающее значение имеет оптимальное обеспечение животных этими микроэлементами, особенно селеном, токсичным в завышенных дозах.

БИБЛИОГРАФИЧЕСКИЙ  СПИСОК



Йод и селен для птиц

©