Селен и глутатионпероксидаза

СЕЛЕНЗАВИСИМАЯ ГЛУТАТИОНПЕРОКСИДАЗА

селензависимый фермент - глутатионпероксидаза


СЕЛЕН В АНТИОКСИДАНТНОМ ФЕРМЕНТЕ - МОЩНАЯ ЗАЩИТА ОТ ОКСИДАТИВНОГО (ОКИСЛИТЕЛЬНОГО) СТРЕССА

В различных источниках, включая интернет можно встретить много информации об антиоксидантых и других уникальных свойствах селена. Причем зачастую все сведения сводятся лишь к перечислению эффектов, которые оказывает данный микроэлемент – это защита от свободных радикалов, противоопухолевая и иммуномодулирующая активность, участие в образовании некоторых гормонов и метаболизме нуклеиновых кислот и т.д.

Однако редко акцентируется внимание на том, что «голый» селен сам по себе организмом не используется. И здесь необходимо подчеркнуть, что большая часть селена в животных тканях присутствует в виде селенометионина и селеноцистеина, т.е. органическая форма селена заключена в химической связи с аминокислотами. Именно в таком виде, либо в виде остатков указанных аминокислот селен входит в состав различных селенопротеинов, селензависимых ферментов и некоторых других белков, которые и являются непосредственными участниками жизненно важных процессов в организме человека.

УЧАСТИЕ СЕЛЕНЗАВИСИМОЙ ГЛУТАТИОНПЕРОКСИДАЗЫ В ПРОЦЕССЕ ЙОДИРОВАНИЯ В ЩИТОВИДНОЙ ЖЕЛЕЗЕ

 

glutationperoksidaza_3_gpx3.png

Рис.1. Структуры Глутатионпероксидазы 3 (плазма) - энзим, который в людях зашифрован геном GPX3


Одним из примеров селензависимых ферментов является глутатионпероксидаза, который является частью естественной внутренней защиты организма от оксидативного (окислительного) стресса. Глутатионпероксидазы – это несколько родственных ферментов, в большинстве своем, селенсодержащих, каждый из которых имеет свой «участок» клеток, где он преимущественно экспрессируется (синтезируется).

Так, в щитовидной железе (ЩЖ) экспрессированы несколько глутатионпероксидаз (GPx1, GPx3 и GPx4), участвующих в метаболизме тиреоидных гормонов и обеспечивающих защиту клеток от повреждающего действия перекиси водорода (H₂O₂) и свободных радикалов. Каждая глутатионпероксидаза способна восстанавливать потенциально опасные реактивные формы кислорода (например, H₂O₂ и гидроперекиси липидов) до безвредных соединений (воды и спирта), что препятствует образованию новых свободных радикалов.

Глутатионпероксидаза – это селензависимый фермент, поэтому ее активность напрямую зависит от содержания селена в крови. Дефицит селена приводит к снижению ее активности, а введение селена – к повышению таковой. При глубоком дефиците селена синтеза указанных белков не происходит.

Из всех селенозависимых белков в щитовидной железе человека наиболее активно экспрессируется (синтезируется) плазматическая глутатионпероксидаза (GPx3), которая и определяет повышенное содержание селена в этом органе. В отсутствие ТТГ (тиреотропного гормона) секреция GPx3 тиреоцитами (клетками эпителия, выстилающего фолликулы щитовидной железы) приводит к сокращению количества доступной для реакций йодирования перекиси водорода H2O2. И наоборот, в присутствии ТТГ снижается активность GPx3, как следствие, увеличивается количество доступной H2O2. В то же время внутри тиреоцитов растет концентрация GPx3, таким образом усиливается защита от окислительного стресса, индуцированного синтезом тиреоидных гормонов. 

При дефиците селена снижается активность глутатионпероксидазы, вследствие чего накапливается избыточное количество H2O2 и увеличивается активность ТПО (тиреопероксидазы). Это подтверждает то, что система глутатионпероксидазы занимает центральное место в процессе йодирования, и что интратиреоидное содержание селена определяет ее активность.

Прим.: Также стоит отметить, что важнейший путь метаболизма тиреоидных гормонов - последовательное отщепление атомов йода (дейодирование) осуществляется при участии специфических ферментов – селенодейодиназ (D1, D2 и D3). Недостаточный уровень селена ассоциируется со снижением синтеза ферментов, принимающих участие в синтезе и метаболизме тиреоидных гормонов. При этом добавление йода не компенсирует указанный дефект…

См. подробнее: Бирюкова Е.В. Современный взгляд на роль селена в физиологии и патологии щитовидной железы // Эффективная фармакотерапия. 2017. №8 С.34-41

ПРЕДПОСЫЛКИ ДЛЯ РАЗРАБОТКИ СЕЛЕНСОДЕРЖАЩЕГО ПРОБИОТИКА «СЕЛЕНПРОПИОНИКС»

selenpropioniks_3.jpg

 Рис. 2. "Селенпропионикс"


Итак, селен является эссенциальным микроэлементов и без него не могут функционировать многие системы человеческого организма. Следовательно, первой предпосылкой для разработки «Селенпропионикса» явилась необходимость устранения тотального дефицита Селена, т.к. территория РФ эндемична по селену и его дефицит является большой проблемой современного здравоохранения.

Второй предпосылкой явилось то, что даже при достаточном поступлении селена в организм человека в составе продуктов питания, он может быть не усвоен, т.к. при дисбактериозах и заболеваниях ЖКТ происходит нарушении кишечного всасывания. Именно поэтому, использование пробиотических микроорганизмов, устраняющих дисбактериозы, а также влияющих на процессы кишечного всасывания, является важным условием обеспечения организщма адекватным количеством селена.

Ну и третей предпосылкой явилась возможность получения органической формы селена за счет ферментативного селенирования аминокислот, что повысило как биодоступность микроэлемента, так и его безопасность. Известно, что селенит-ионы при поступлении в клетку прокариот (бактерий) восстанавливаются до селеноводорода и его алкильных производных, которые потом включаются в серусодержащие аминокислоты, а затем в селенопротеины с образованием органических форм селена. Селен поступает в клетку с участием тех  же транспортных систем, что и сера, и включается в обмен серы, заменяя ее в метионине и цистеине. Селенсодержащие белки входят в состав внутриклеточной гидрофильной белковой фракции микробной биомассы.Способность бифидобактерий и пропионовокислых бактерий, как микроорганизмов прокариотической природы, накапливать органический селен стало важной препосылкой для создания инновационного селенсодержащего биоконцентратта.

Таким образом, использование «Селенпропионикса» эффективно и безопасно устраняет селенодефицит, тем самым обеспечивая в организме необходимую экспрессию селенопротеинов и селензависимых ферментов, одним из которых, в частности, является глутатионпероксидаза.

ГЛУТАТИОНПЕРОКСИДАЗА – МОЩНЫЙ АНТИОКСИДАНТ

Глутатионпероксидазы - семейство ферментов, защищающих организм от окислительного повреждения свободными радикалами. У млекопитающих и человека значительная часть ферментов данного семейства представляет собой селеносодержащие тетрамерные белки. У человека различают 8 форм глутатионпероксидаз, 5 из которых являются селензависимыми (в активном центре фермента находится остаток аминокислоты селеноцистеина). Антиоксидантные функции селенсодержащих форм глутатионпероксидазы сильно увеличены за счет наличия селена. Целостность клеточных и внутриклеточных мембран сильно зависит от глутатионпероксидазы.

Глутатионпероксидаза 2 - GPx2 глутатионпероксидаза 4 - GPx4
Глутатионпероксидаза 2 Глутатионпероксидаза 4
Рис.3. Структуры некоторых глутатионпероксидаз: Глутатионпероксидаза 2 (GPx2) - экспрессируется в кишечнике. Наибольшие концентрации этого фермента найдены у основания крипт кишечника; Глутатионпероксидаза 4 (GPx4) - мономерный изофермент, имеет большое значение в метаболизме гидропероксидов липидов, экспрессируется практически во всех клетках млекопитающих на более низких уровнях. Существует в виде трех форм, синтезирующихся с одного и того же гена (цитозольная, митохондриальная формы и GPx4 ядер клеток спермы)

Селенсодержащие формы глутатионпероксидазы:

  • Глутатионпероксидаза 1 (GPx1) - тетрамерная форма, является наиболее распространенной формой фермента, и обнаружена в цитоплазме практически всех тканей млекопитающих, субстратом GPx1 является как пероксид водорода, так и многие органические гидропероксиды.
  • Глутатионпероксидаза 2 (GPx2) - также тетрамерный фермент, экспрессируется в кишечнике. Наибольшие концентрации этого фермента найдены у основания крипт кишечника. В эмбриогенезе экспрессия гена, кодирующего GPx2, преобладает в быстрорастущих тканях.
  • GPx3 является внеклеточным тетрамерным ферментом и в основном встречается в плазме. Секретируется в плазму крови в основном почками.
  • Глутатионпероксидаза 4 (GPx4) - мономерный изофермент, имеет большое значение в метаболизме гидропероксидов липидов. GPx4 также экспрессируется практически во всех клетках млекопитающих на более низких уровнях. Существует в виде трех форм, синтезирующихся с одного и того же гена (цитозольная, митохондриальная формы и GPx4 ядер клеток спермы).
  • GPx6 - тетрамер, селенопротеин у человека и неселеновый фермент у грызунов, экспрессия гена этого фермента выявлена в эмбрионах мышей и в боуменовых железах под обонятельным эпителием.

Глутатионпероксидаза имеет огромное значение для инактивации активных форм кислорода. Данный фермент катализирует восстановление пероксида водорода до воды и липидных гидропероксидов в соответствующие спирты с помощью глутатиона (гамма-глутамилцистеинилглицина или GSH). Сульфгидрильная группа GSH окисляется до дисульфидной формы, отдавая электроны пероксиду водорода или гидропероксиду липида.

Глутатион – важная часть глутатионпероксидазы

Глутатион (Glutathione)

Рис. 4. Модель молекулы глутатиона. Химическая формула: C₁₀H₁₇N₃O₆S


Глутатион (glutathione, лат. gluten - клей и греч. theion - сера) является кофактором фермента глутатионпероксидазы (прим.: кофактор – небелковое и не производное от аминокислот соединение, которое нужно белку для его биологической деятельности), связывает свободные радикалы и, вероятно, играет роль в инактивации алкилирующих средств за счет прямого связывания и детоксикации, ускорения их метаболизма и репарации ДНК. Глутатион также является основным продуктом превращения глутаминовой кислоты в организме (прим.: Глутаминовая кислота относится к группе заменимых аминокислот и играет важную роль в организме. Её содержание в организме составляет до 25% от всех аминокислот. В живых организмах глутаминовая кислота входит в состав белков, ряда низкомолекулярных веществ и в свободном виде, играет важную роль в азотистом обмене).

Глутатион – это трипептид (глутаминовая кислотацистеинглицин), имеющийся во всех тканях всех живых организмах и участвующий во многих тиолдисульфидных окислительно-восстановительных реакциях, все клетки организма человека способны синтезировать глутатион. Он не является незаменимым веществом и может быть синтезирован из аминокислот L-цистеина, L-глутаминовой кислоты и глицина.

Обладая сульфгидрильными (-SH) группами и присутствуя в клетках в большом количестве, глутатион защищает от окисления другие соединения, держащие сульфгидрильные группы (например, ферменты и KoA). Он участвует также в разрушении перекисей, в том числе перекиси водорода, и поддерживает восстановительный потенциал клеток. Посредством гамма-глутамилового цикла глутатион способствует транспорту аминокислот через клеточную мембрану.

Прим.: Характерное следствие дефицита глутатиона – гемолитическая анемия – патология эритроцитов, отличительным признаком которой является ускоренное разрушение красных кровяных телец с высвобождением повышенного количества непрямого билирубина. Для данной группы заболеваний типично сочетание анемического синдрома, желтухи и увеличения размеров селезенки, в некоторых случаях бывает увеличена печень.

Глутатионредуктаза - фермент, восстанавливающий глутатион

глутатионредуктаза - glutathione reductase

Рис.5. Структура глутатионредуктазы. На рисунке FAD - флавинадениндинуклеотид (ФАД) - кофермент, принимающий участие во многих окислительно-восстановительных биохимических процессах. ФАД существует в двух формах — окисленной и восстановленной, его биохимическая функция, как правило, заключается в переходе между этими формами.


Восстанавливается окисленный глутатион под действием фермента глутатионредуктазы, который постоянно находится в клетке в активном состоянии и индуцируется при окислительном стрессе. Соотношение восстановленной и окисленной форм глутатиона в клетке является одним из важнейших параметров, который показывает уровень окислительного стресса.

Глутатионредуктаза – фермент, восстанавливающий дисульфидную связь глутатиона GSSG до его сульфгидрильной формы GSH. Глутатион дисульфид (GSSG) - это дисульфид, полученный из двух молекул глутатиона. Антиоксидантные ферменты глутатионпероксидазы генерируют дисульфид глутатиона во время восстановления пероксидов, таких как перекись водорода (H2O2) и органические гидропероксиды (ROOH) – см. реакции ниже.

  • Восстановление глутатиона происходит за счёт энергии  NADPH (восстановленной формы кофермента NADP - см. ниже). В таких клетках как эритроциты, которые постоянно подвержены высокому оксидативному стрессу, до 10% потребляемой глюкозы используется на восстановление глутатиона глутатионредуктазой.
  • NADP (или НАДФ) (никотинамидадениндинуклеотидфосфат) - довольно широко распространённый в природе кофермент некоторых дегидрогеназ - ферментов, катализирующих окислительно-восстановительные реакции в живых клетках. NADP принимает на себя водород и электроны окисляемого соединения и передаёт их на другие вещества.
  • Коферменты - органические природные соединения небелковой природы, необходимые для осуществления каталитического действия многих ферментов. Соединяясь с белковой частью молекулы фермента – апоферментом, кофермент образует каталитически активный комплекс - холофермент. Сами по себе коферменты, как и апоферменты, не обладают каталитической активностью.

ВОССТАНОВЛЕНИЕ ПЕРОКСИДА ВОДОРОДА и ОРГАНИЧЕСКИХ ГИДРОПЕРОКСИДОВ

Примером реакций, катализируемых ферментом глутатионпероксидазой являются реакции:

2GSH + H2O2 → GSSG + 2H2O

2GSH + ROOH → GSSG + ROH + H2O

где GSH обозначает восстановленный глутатион, H2O2 – пероксид (перекись) водорода, (ROOH) – органический гидропероксид, а GSSG - дисульфид глутатиона. Как видно из реакций, в результате окисления глутатиона перекисью водорода или гидропероксидом образуется молекула воды.

Фермент глутатионредуктаза далее восстанавливает окисленный глутатион и завершает цикл:

GSSG + NADPH + H+ → 2GSH + NADP+

Итак, как было указано выше, в организме животных и человека в зависимости от органа и ткани обнаружено несколько форм глутатионпероксидаз. Глутатионпероксидаза чаще всего представляет собой гомотетрамер. В активном центре большинства из них присутствует остаток селеноцистеина, необходимого для протекания ферментативной реакции.

селеноцистеин

Рис. 6. Модель молекулы селеноцистеина. Химическая формула: C3H7NO2Se


Прим.: Селеноцистеин (сокращённо Sec) – это 21-япротеиногенная аминокислота, аналог цистеина с заменой атома серы на атом селена. Входит в состав активного центра фермента глутатионпероксидазы, а также в состав селенопротеинов, специфических ферментов дейодиназ и некоторых других белков.

 Вывод:

Таким образом, недостаток селена  (селенодефицит) в организме приводит к увеличению активных форм кислорода в клетках, что, в свою очередь, проявляется в ослаблении иммунной системы организма и возникновению заболеваний, связанных с многочисленными изменениями в структуре и функциях биополимеров (белков, нуклеиновых кислот и липидов). Иными словами, селенодефицит приводит к снижению в организме человека уровня его естественных внутренних защитников от оксидативного (окислительного) стресса - селензависимых ферментов глутатионпероксидазы, что в свою очередь усиливает процесс повреждения клеток в результате их свободнорадикального окисления.

Будьте здоровы!

 

ССЫЛКИ К РАЗДЕЛУ О ПРЕПАРАТАХ ПРОБИОТИКАХ

  1. ПРОБИОТИКИ
  2. ДОМАШНИЕ ЗАКВАСКИ
  3. БИФИКАРДИО
  4. КОНЦЕНТРАТ БИФИДОБАКТЕРИЙ ЖИДКИЙ
  5. ПРОПИОНИКС
  6. ЙОДПРОПИОНИКС
  7. СЕЛЕНПРОПИОНИКС
  8. БИФИДОБАКТЕРИИ
  9. ПРОПИОНОВОКИСЛЫЕ БАКТЕРИИ
  10. ПРОБИОТИКИ И ПРЕБИОТИКИ
  11. СИНБИОТИКИ
  12. АНТИОКСИДАНТНЫЕ СВОЙСТВА
  13. АНТИОКСИДАНТНЫЕ ФЕРМЕНТЫ
  14. АНТИМУТАГЕННАЯ АКТИВНОСТЬ
  15. МИКРОФЛОРА КИШЕЧНОГО ТРАКТА
  16. МИКРОФЛОРА И ФУНКЦИИ МОЗГА
  17. ПРОБИОТИКИ И ХОЛЕСТЕРИН
  18. ПРОБИОТИКИ ПРОТИВ ОЖИРЕНИЯ
  19. МИКРОФЛОРА И САХАРНЫЙ ДИАБЕТ
  20. ПРОБИОТИКИ и ИММУНИТЕТ
  21. ПРОБИОТИКИ и ГРУДНЫЕ ДЕТИ
  22. ДИСБАКТЕРИОЗ
  23. МИКРОЭЛЕМЕНТНЫЙ СОСТАВ
  24. ПРОБИОТИКИ С ПНЖК
  25. ВИТАМИННЫЙ СИНТЕЗ
  26. АМИНОКИСЛОТНЫЙ СИНТЕЗ
  27. АНТИМИКРОБНЫЕ СВОЙСТВА
  28. СИНТЕЗ ЛЕТУЧИХ ЖИРНЫХ КИСЛОТ
  29. СИНТЕЗ БАКТЕРИОЦИНОВ
  30. ФУНКЦИОНАЛЬНОЕ ПИТАНИЕ
  31. АЛИМЕНТАРНЫЕ ЗАБОЛЕВАНИЯ
  32. ПРОБИОТИКИ ДЛЯ СПОРТСМЕНОВ
  33. ПРОИЗВОДСТВО ПРОБИОТИКОВ
  34. ЗАКВАСКИ ДЛЯ ПИЩЕВОЙ ПРОМЫШЛЕННОСТИ
  35. НОВОСТИ