Главная \ Новости

Кишечные бактерии помогают японцам переваривать водоросли

« Назад

12.04.2015 19:47

КИШЕЧНЫЕ БАКТЕРИИ ПОМОГАЮТ ЯПОНЦАМ ПЕРЕВАРИВАТЬ КРАСНЫЕ ВОДОРОСЛИ

Водоросли рода Порфира в Японии получили название нори.

На рисунке: водоросли рода Порфира (яп. Нори)

О "ГОРИЗОНТАЛЬНОМ ПЕРЕНОСЕ ГЕНОВ" ИЗ МОРСКОЙ БАКТЕРИИ

Как известно, даже за сутки можно значительно изменить бактериальный состав ЖКТ, сменив рацион питания. Состав, соотношение - это все понятно. Но о том, что микробиом человека может еще приспосабливаться путем обмена генами с нетипичными представителями микрофлоры хозяина, говорит тот факт, что у японцев имеются особые бактерии, переваривающие водоросли. Ранее, 21.02.2015 г., мы уже кратко осветили данную тему в соцсети (см.: Микробиом человека очень изменчив). Однако в связи с возросшим интересом к микробиому человека и развитием такого направления в науке, как «микробиомика», мы решили дать более подробную информацию.

лист водоросли нори Как известно, кишечная флора помогает млекопитающим переваривать углеводы растительного происхождения. Оказалось, что особенности нашей диеты влияют на эволюцию кишечных бактерий. Французские ученые обнаружили, что микробы, живущие в кишечнике японцев, производят особые ферменты для расщепления порфирана. Этот углевод содержится в красных водорослях, которые в Японии издавна составляют важную часть рациона. Гены ферментов-порфираназ были заимствованы японскими кишечными микробами у морских бактерий путем горизонтального генетического обмена. Бактерии из кишечника американцев таких генов не имеют.

В геноме человека и других приматов отсутствуют гены, необходимые для усвоения многих растительных полисахаридов, которые являются важным компонентом нашей диеты. Проблему помогают решить симбиотические кишечные бактерии, в чьих геномах имеются те гены, которых нам не хватает (см.: Кишечная микрофлора превращает человека в «сверхорганизм»).

лист водоросли нориМорские водоросли содержат особые сульфатированные углеводы, отсутствующие у наземных растений. Этими углеводами питаются некоторые морские гетеротрофные бактерии, в том числе Zobellia galactanivorans из группы Bacteroidetes. Ферменты, при помощи которых бактерии расщепляют сульфатированные углеводы, до сих пор не были известны. Изучая геном бактерии Z. galactanivorans, французские исследователи обнаружили пять генов, которые, судя по их нуклеотидной последовательности, могли бы кодировать такие ферменты. Два из этих генов удалось пересадить в кишечную палочку, что позволило выделить кодируемые ими ферменты в чистом виде и изучить их свойства экспериментально. Оказалось, что из всех растительных полисахаридов эти ферменты расщепляют только порфиран — сульфатированный углевод, содержащийся в порфире и других красных водорослях. Таким образом, исследователи открыли новый класс ферментов, который они назвали «порфираназами».

порфиран и агароза

Следующим этапом работы стало изучение трехмерной структуры порфираназ и выявление тех особенностей активного центра этих ферментов, которые обеспечивают избирательное связывание порфирана. Оказалось, что в активном центре порфираназ имеется специальный «карман» для сульфатной группы, которого нет у родственных ферментов, расщепляющих несульфатированные углеводы.

Разобравшись в структуре фермента, ученые получили возможность осуществить широкомасштабный поиск порфираназ среди отсеквенированных нуклеотидных последовательностей, хранящихся в Генбанке. Порфираназы нашлись у нескольких морских бактерий, а также у бактерии Bacteroides plebeius, обитающей в кишечнике человека. В литературе описано 6 штаммов этой бактерии, причем все они были обнаружены у жителей Японии. Известны геномы 24 других видов рода Bacteroides, которые обитают в кишечнике жителей разных стран, но ни у одной из этих бактерий нет ни порфираназ, ни других специализированных ферментов, предназначенных для расщепления углеводов морских водорослей.

Более детальный анализ генома Bacteroides plebeius показал, что по соседству с геном порфираназы имеется еще 16 генов, связанных с перевариванием полисахаридов. Только шесть из них оказались родственными генам, имеющимся у других кишечных Bacteroides. Остальные 10 генов (в том числе гены ферментов бета-галактозидаз, бета-агараз и сульфатаз), как и ген порфираназы, похожи больше всего на гены морских бактерий, питающихся водорослевыми полисахаридами. Это означает, что кишечная бактерия Bacteroides plebeius приобрела комплекс генов, необходимых для расщепления водорослевых полисахаридов, от морских бактерий путем горизонтального генетического обмена (были включены через "горизонтальный перенос генов"). В полном соответствии с этим выводом по соседству с изучаемыми генами в геноме Bacteroides plebeius присутствуют специализированные гены, участвующие в осуществлении горизонтального обмена (см. relaxase).

Авторы исследовали методом метагеномного анализа кишечную флору у 13 японских и 18 североамериканских добровольцев. У четверых японских граждан были обнаружены порфираназы и агаразы, в том числе у матери и ее грудной дочки, что свидетельствует о возможности передачи специфических кишечных бактерий от родителей к потомкам. В североамериканской выборке ни порфираназ, ни агараз не обнаружено. 

По-видимому, японские кишечные бактерии получили возможность позаимствовать полезные гены у морских микробов благодаря существующему в Японии обычаю употреблять в пищу свежие водоросли. Нори (порфира) — фактически единственный источник порфирана в человеческой диете. Японцы ели водоросли уже в раннем средневековье: сохранились документы VIII века, из которых следует, что в то время водорослями можно было платить налоги в казну. Но несколько веков или тысячелетий — ничтожно малое время по сравнению с десятками миллионов лет эволюции кишечной флоры растительноядных и всеядных млекопитающих. Факт горизонтального переноса в данном случае было легко установить, потому что генетическое заимствование произошло сравнительно недавно. Гены для переваривания полисахаридов наземных растений, скорее всего, тоже были приобретены кишечными бактериями путем горизонтального переноса, но за давностью лет доказать это гораздо труднее.

Исследование показало, что человек даже в историческое время не утратил способности быстро приспосабливаться к изменениям собственной диеты и осваивать новые биохимические функции. В данном случае адаптация произошла за счет генетических изменений у кишечных симбионтов, но в других ситуациях приспособление может происходить и путем закрепления мутаций в нашем собственном геноме. Типичный пример — распространение мутации, позволяющей взрослым людям переваривать молочный сахар лактозу, у народов, занимавшихся молочным животноводством  (С. А. Боринская. Генетическое разнообразие народов) [см. ниже]

В обоих случаях изменившееся поведение людей (появление обычая пить молоко или есть сырые водоросли) повлияло на направленность отбора и способствовало закреплению мутаций, выгодных именно при таком поведении. Данный механизм, могущий придавать эволюции способных к обучению животных видимость «осмысленности» и «целенаправленности», известен под названием «эффект Болдуина».

Источник: Jan-Hendrik Hehemann, Gaлlle Correc, Tristan Barbeyron, William Helbert, Mirjam Czjzek, Gurvan Michel. Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota // Nature. 2010. V. 464. P. 908–912.

См. дополнительно к теме:

Генетическое разнообразие и питание

генетическое разнообразие людей

Прим. ред.: Здесь представлен отрывок из статьи «Генетическое разнообразие народов» - авт.: С.А. Боринская, научн. сотр. лаборатории анализа генома Ин-та общей генетики им. Н.И. Вавилова РАН. С учетом выше изложенного материала, касающегося горизонтального переноса генов бактерий, а также в свете постоянно расширяющихся знаний о микробиоме человека, фактор кишечной микрофлоры в вопросе влияния питания на геном человека становится весьма значимым.

Люди, живущие в разных концах Земли, отличаются по многим признакам: языковой принадлежности, культурным традициям, внешности, генетическим особенностям. Генетические характеристики народов зависят от их истории и образа жизни. Различия между ними возникают в изолированных популяциях, не обменивающихся потоками генов (т.е. не смешивающихся из-за географических, лингвистических или религиозных барьеров), за счет случайных изменений частот аллелей и процессов позитивного и негативного естественного отбора.

Типы питания.

гиполактазияНекоторые генетические изменения связаны с разными типами питания. Среди них наиболее известна непереносимость молочного сахара (лактозы) – гиполактазия. У детенышей всех млекопитающих для усвоения лактозы вырабатывается фермент лактаза. По окончании вскармливания она исчезает из кишечного тракта детеныша. Отсутствие фермента у взрослых – исходный, предковый признак для человека.

Во многих азиатских и африканских странах, где взрослые традиционно не пьют молоко, после пятилетнего возраста лактаза не синтезируется, и потому употребление молока приводит к расстройству пищеварения. Однако большинство взрослых европейцев могут без вреда для здоровья пить молоко: синтез лактазы у них не прекращается из-за мутации в участке ДНК, регулирующем образование фермента. Эта мутация распространилась после появления молочного скотоводства 9–10 тыс. лет назад и встречается преимущественно у европейских народов. Более 90% шведов и датчан способны усваивать молоко, и лишь небольшая часть населения Скандинавии отличается гиполактазией. В России частота гиполактазии составляет около 30% для русских и более 60–80% для коренных народов Сибири и Дальнего Востока. Народы, у которых гиполактазия сочетается с молочным скотоводством, традиционно используют не сырое молоко, а кисломолочные продукты, в которых молочный сахар уже расщеплен бактериями.

Отсутствие сведений о генетических особенностях народов порой приводит к тому, что при гиполактазии людям, реагирующим на молоко расстройством пищеварения, которое принимают за кишечные инфекции, вместо необходимого изменения диеты предписывают лечение антибиотиками, ведущее к дисбактериозу.

Стоит отметить, что распространение мутации, позволяющей взрослым людям переваривать молочный сахар лактозу, произошло в тех человеческих популяциях, где вошло в обиход молочное животноводство, т.е. изменилось поведение (люди стали доить коров, кобыл, овец или коз) - и в результате изменился генотип (развилась наследственная способность усваивать молоко в зрелом возрасте).

Кроме употребления молока еще один фактор мог влиять на сохранение у взрослых синтеза лактазы. В присутствии лактазы молочный сахар способствует усвоению кальция, выполняя те же функции, что и витамин D. Возможно, именно поэтому у северных европейцев мутация, о которой идет речь, встречается чаще всего. Это пример генетической адаптации к взаимодействующим пищевым и климатическим факторам.

Прим. ред.: Данное мутация тесно связана с таким понятием, как «эффект Болдуина» (Baldwin effect), когда изменившееся поведение может вести к изменению факторов отбора и, соответственно, к новому направлению эволюционного развития. Данное явление произошло от имени  американского психолога Джеймса Болдуина, который впервые выдвинул эту гипотезу в 1896 году. Например, если появился новый хищник, от которого можно спастись, забравшись на дерево, жертвы могут научиться залезать на деревья, не имея к этому врожденной (инстинктивной) предрасположенности. Сначала каждая особь будет учиться новому поведению в течение жизни. Если это будет продолжаться достаточно долго, те особи, которые быстрее учатся залезать на деревья или делают это более ловко в силу каких-нибудь врожденных вариаций в строении тела (чуть более цепкие лапы, когти и т. п.), получат селективное преимущество, то есть будут оставлять больше потомков. Следовательно, начнется отбор на способность влезать на деревья и на умение быстро этому учиться. Так поведенческий признак, изначально появлявшийся каждый раз заново в результате прижизненного обучения, со временем может стать инстинктивным (врожденным) — изменившееся поведение будет «вписано» в генотип. Лапы при этом тоже, скорее всего, станут более цепкими. Данный механизм очень важен для понимания эволюции. Например, из него следует, что по мере роста способности к обучению эволюция будет выглядеть всё более «целенаправленной» и «осмысленной».

Еще несколько примеров, связанных с питанием

Эскимосы при традиционном питании обычно потребляют до 2 кг мяса в день. Переварить такие количества мяса можно лишь при сочетании определенных культурных (кулинарных) традиций, микрофлоры определенного типа и наследственных физиологических особенностей пищеварения.

У народов Ецелиакиявропы встречается целиакия - непереносимость белка глютена, содержащегося в зернах ржи, пшеницы и других злаков. Она вызывает при потреблении в пищу злаков множественные нарушения развития и умственную отсталость. Заболевание в 10 раз чаще встречается в Ирландии, чем в странах континентальной Европы, вероятно, потому, что в ней пшеница и другие злаки традиционно не были основными продуктами питания.

У жителей Северноазиатского региона часто отсутствует фермент трегалаза, расщепляющий углеводы грибов. Эта наследственная особенность сочетается с культурной: в этих местах грибы считаются пищей оленей, не пригодной для человека.

Для жителей Восточной Азии характерна другая наследственная особенность обмена веществ. Известно, что многие монголоиды даже от небольших доз спиртного быстро пьянеют и могут получить сильную интоксикацию. Это связано с накоплением в крови ацетальдегида, образующегося при окислении алкоголя ферментами печени. Известно, что алкоголь окисляется в печени в два этапа: сначала превращается в токсичный ацетальдегид, а затем окисляется с образованием безвредных продуктов, которые выводятся из организма. Скорость работы ферментов первого и второго этапов (алкогольдегидрогеназы и ацетальдегидрогеназы) задается генетически. Для коренного населения Восточной Азии характерно сочетание «быстрых» ферментов первого этапа с «медленными» ферментами второго этапа. В этом случае при приеме спиртного этанол быстро перерабатывается в альдегид (первый этап), а его дальнейшее удаление (второй этап) происходит медленно. Такая особенность связана с сочетанием двух мутаций, влияющих на скорость работы упомянутых ферментов. Предполагается, что высокая частота этих мутаций (30–70%) есть результат адаптации к неизвестному пока фактору среды.

Приспособления к типу питания связаны с комплексами генетических изменений, не многие из которых пока детально изучены на уровне ДНК. Известно, что около 20–30% жителей Эфиопии и Саудовской Аравии способны быстро расщеплять некоторые пищевые вещества и лекарства, в частности амитриптилин, благодаря наличию двух или более копий гена, кодирующего один из видов цитохромов – ферментов, разлагающих чужеродные вещества, поступающие в организм с пищей. У других народов удвоение данного гена цитохрома встречается с частотой не более 3–5%, и распространены неактивные варианты гена (от 2–7% у жителей Европы и до 30% в Китае). Возможно, число копий гена увеличивается из-за особенностей диеты (использования больших количеств перца или съедобного растения тефф, составляющего до 60% пищевых продуктов в Эфиопии и нигде больше не распространенного в такой степени). Однако определить, где причина, а где следствие в настоящее время невозможно. Случайно ли увеличение в популяции носителей множественных генов позволило людям есть какие-то особые растения? Или, наоборот, употребление перца (или другой пищи, для усвоения которой необходим цитохром) послужило фактором отбора индивидов с удвоенным геном? Как тот, так и другой процесс могли иметь место в эволюции популяций.

Очевидно, что пищевые традиции народа и генетические факторы взаимодействуют. Употребление той или иной пищи становится возможным лишь при наличии определенных генетических предпосылок, а диета, ставшая традиционной, действует как фактор отбора, влияя на частоту аллелей и распространение в популяции наиболее адаптивных при таком питании генетических вариантов.

Прим. ред.: Аллели - формы состояния одного и того же гена, занимающие идентичные локусы в гомологичных хромосомах и обусловливающие фенотипически различия одного и того же признака. Каждый ген может находиться по крайней мере в двух состояниях (определяемых его структурой), одно из которых обычно обеспечивает максимальное развитие признака — доминантный аллель, другое приводит к частичной или полной утрате его проявления или к изменению в его проявлении — рецессивный аллель. Таким образом, аллели - альтернативные варианты гена в каждом локусе. В ходе эволюции разные аллели произошли в результате мутаций от единого аллеля-предшественника, чаще всего они отличаются друг от друга заменой одного нуклеотида (миссенс-мутации).


Комментарии


Комментариев пока нет

Пожалуйста, авторизуйтесь, чтобы оставить комментарий.
Я согласен(на) на обработку моих персональных данных. Подробнее
Пожалуйста, авторизуйтесь, чтобы оставить комментарий.

Авторизация
Введите Ваш логин или e-mail:

Пароль :
запомнить