Development of the calcium-and-collagen-rich soft curd cheese technology

A. V. Shchekotova1, I. S. Khamagaeva1, E. I. Reshetnik2, S. I. Artyuhova3, I. P. Maradudina1

1East Siberia State University of Technology and Management, Klyuchevskaya Str., 40V, Ulan-Ude, 670013, Russia
2Far East State Agrarian University, Politehnicheskaya Str., 86, Blagoveshchensk, 675005, Russia
3Omsk State Technical University, Mira Ave., 11, Omsk, 644050, Russia

Abstract:
The article describes the results of the studies on the soft curd cheese technology development based on calcium-containing protein concentrate, with the addition of modified collagen-containing raw materials (cattle rumen), to prevent osteoporosis. It has been established that the introduction of collagen-containing rumen biomodified with lactic bacteria in the amount of 5% of the cheese mass volume yields a cheese with the best consumer properties. It has been noted that the use of collagen-containing raw materials in the production of curd cheese allows obtaining a cheese dough with dense elastic structure without the use of expensive enzymes, emulsifiers and stabilizers. A recommended shelf life of the enriched curd cheese of about 12-14 days has been established. The developed curd cheese technology has provided a therapeutic product with good organoleptic characteristics, containing the significant amount of calcium, biomodified collagen, and viable lactic bacteria cells. Curd cheeses produced as per the technology are essential in the treatment and prevention of osteoporosis and associated diseases.

Keywords: curd cheese, calcium, collagen-containing raw materials, osteoporosis, milk protein concentrate, lactic bacteria.

INTRODUCTION
Due to its high prevalence and medico-social significance osteoporosis is among the top five most pressing diseases for the healthcare of developed countries. Modern prevention and treatment methods allow improving the quality of life. Curd cheeses are complex foods that provide the necessary amount of calcium and collagen in food products. Calcium is an essential nutrient for bone strength, while collagen helps calcium to stay in the bones and, therefore, increases their elasticity and density. The widespread lack of calcium and collagen consumption with food products dictates the need to develop special complex preparations, dietary supplements and specialized products containing these components.

The world nutrition science recognizes cheese as a highly nutritious, biologically sound and easily digestible product [15-18]. It is an indispensable and obligatory component of the human diet. Curd cheeses make up a special group of cheeses. Biological processes occurring during the production of curd cheese result in the formation of peptides and amino acids, giving them the properties of dietary products [15, 18].

The traditional production of high-protein products (cottage cheese and cheese) consists in accumulating the protein-fatty part of milk and transforming these components into compounds, which determine the specific physico-chemical and organoleptic characteristics of the product [15, 19]. Milk components in cheese production are concentrated starting with the coagulation of milk by enzymatic, acidic, acid-enzymatic method or thermo-acid method of protein sedimentation [15]. Thus, destabilization of the colloidal phase of milk, and separation thereof from a part of the dispersed medium is an essential cheese production stage. In contrast to the traditional cheese production methods, the authors chose another approach, i.e. the concentration of skim milk components by thermocalcium coagulation, followed by protein fermentation with proteolytic-active cultures of Lactobacillus helveticus lactic bacteria [20, 21].

Milk protein concentrates (MPC) were used as a protein basis for soft curd cheese. The MPC was obtained by thermal calcium coagulation of skimmed cow milk, followed by fermentation of proteins with Lactobacillus helveticus H15-18 lactic bacteria. The coagulant was introduced into milk in the form of a 20% CaCl₂ solution in an amount of 1.5 g/l at of 95 °C. The protein clot was fermented under the following conditions: the dose of the lactic bacteria starter was equal to 5%, the temperature was (40 ± 2) °C, and the duration was 4 hours until reaching the acidity of (100 ± 2) °T. The calcium content in fermented MPC was 265 mg/100 g [20, 21].

The cattle rumen was used as a collagen-containing raw material (CCRM). The raw materials were accepted and prepared as per GOST 32244-13 “Processed meat byproducts. Technical conditions”. In order to level the negative features of the structure, properties and composition of the rumen, the collagen-containing raw material was preliminarily subjected to heat treatment. The rumen was cleaned, washed, cut into pieces of 2.5x3 cm and cooked at 100 °C for 2-2.5 hours until softened (the ratio of raw materials to water was 1 : 2). After cooking, the rumen was

MATERIALS AND METHODS
The protein-collagen basis of the curd cheese was developed taking into account the results of the previous studies [20, 21].

The article describes the results of the studies on the soft curd cheese technology development based on calcium-containing protein concentrate, with the addition of modified collagen-containing raw materials (cattle rumen), to prevent osteoporosis. It has been established that the introduction of collagen-containing rumen biomodified with lactic bacteria in the amount of 5% of the cheese mass volume yields a cheese with the best consumer properties. It has been noted that the use of collagen-containing raw materials in the production of curd cheese allows obtaining a cheese dough with dense elastic structure without the use of expensive enzymes, emulsifiers and stabilizers. A recommended shelf life of the enriched curd cheese of about 12-14 days has been established. The developed curd cheese technology has provided a therapeutic product with good organoleptic characteristics, containing the significant amount of calcium, biomodified collagen, and viable lactic bacteria cells. Curd cheeses produced as per the technology are essential in the treatment and prevention of osteoporosis and associated diseases.

Keywords: curd cheese, calcium, collagen-containing raw materials, osteoporosis, milk protein concentrate, lactic bacteria.
crushed on a mincer of 2-3 mm in diameter at the room temperature in order to preserve the fiber-forming ability of dispersed collagen. Bacterial concentrates based on Lactobacillus helveticus H17:18 were used as cultures for rumen fermentation. The rumen was fermented under the following conditions: the dose of the lactic bacteria fermentation was 5%, the temperature - (40 ± 2) °C, and the duration - 5 h.

The use of lactic bacteria of the L. helveticus H17:18 type for the fermentation of raw materials allows activating proteolytic processes, increases calcium, contributes to the formation of certain organoleptic properties, and also increases the nutritional and biological value of protein and collagen-containing raw materials [30, 31, 20].

Organoleptic and physico-chemical indicators of curd cheese were defined by the standard methods: organoleptic indicators - as per GOST R GOST R ISO 22935-2-2011; mass fraction of moisture - by drying the sample in a drying cabinet as per GOST 3626-73; the mass fraction of protein in the cheese was determined as per GOST R 54662-2011; the mass fraction of calcium was determined by the volumetric method using ammonium oxalate on a Solar M-6 atomic absorption spectrophotometer with a flame atomizer; active acidity was determined by the potentiometric method as per GOST 32892-2014; and titrated acidity was determined by titration as per GOST 3624-92.

The number of lactic bacteria cells was determined by limiting dilutions on a dense agar MRS medium as per TU 10-10-02-789-192-95. E. coli bacteria were determined as per GOST 32901; yeast and mold - as per GOST 10444.12, and GOST 33566.

All experiments were carried out in 3-5 replicates. The data obtained were processed using an Excel statistical software package using the Mann-Whitney test. Statistically significant differences at p < 0.05 were discussed.

RESULTS AND DISCUSSION

At the first stage of the work, the protein-collagen base of cottage cheese was built, and its composition was experimentally substantiated.

According to literature data [22-29], when enriching foods with various rumen-based additives, special attention should be paid to sensory indicators, since the use of this type of collagen-containing raw material makes it difficult to obtain a product with good organoleptic and physiological properties. Since collagen is not only a high-protein product but also a product with a high degree of hydration that binds water and fat well, which is an excellent emulsifier and stabilizer, besides controlling sensory parameters, particular attention should be paid to the consistency, moisture content and protein in the enriched product [32].

In this regard, in the following series of experiments, the effect of a biomodified collagen-containing rumen on the main organoleptic, physico-chemical and microbiological indicators of cottage cheese based on calcium-containing milk protein concentrate was determined. CCRM were added to calcium-containing milk protein concentrate after self-pressing at a dosage of 5, 10 and 15%. The obtained samples were thoroughly mixed and shaped in the form of a bar and pressed. Curd cheese without collagen served as a control. The results of the assessment of the quality indicators of the studied samples are presented in Table 1.

Analysis of the data in Table 1 has shown that with an increase in the mass fraction of CCRM in the product, the organoleptic properties of the cheese changed, the protein content increased, and the moisture content in the product decreased. It has been noted that the curd cheese enriched with 5% CCRM had the highest organoleptic properties (dense delicate texture, pure sour-milk taste with a faint taste and flavor of CCRM) and acceptable physicochemical indicators (mass fraction of protein 19%, moisture - 72%). The increase in the amount of CCRM to 10-15% leads to compaction of the clot structure followed by an increase in its synergetic properties, as well as a significant deterioration in the product's organoleptic properties (the appearance of a pronounced taste and smell of CCRM). The content of viable lactic bacteria cells in all samples remained at the same level (10^6 CFU/cm³).

Thus, based on the research, the optimal dose of applying a biomodified collagen-containing rumen in an amount of 5% of the volume of the cheese mass has been chosen, making it possible to produce curd cheese with the best consumer properties. The use of collagen containing raw materials in the production of curd cheese allows obtaining cheese dough with tight elastic structure without the use of expensive enzymes, emulsifiers and stabilizers.

At the next stage of the study, the shelf life of curd cheese enriched with calcium and collagen has been studied.

To determine the shelf life of the product, samples of the enriched curd cheese packaged in consumer packaging (polymer film of 100 g) were placed for storage in a refrigeration chamber at a temperature of (6 ± 2) °C. Samples were taken every 2 days.

Organoleptic characteristics, titratable acidity and microbiological parameters were determined in the studied samples (Table 2).

Table 1 – Indicators of curd cheese samples, depending on the dose of biomodified collagen-containing rumen introduction

<table>
<thead>
<tr>
<th>Indicators</th>
<th>CCRM dose in samples, % of the protein mass</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control (without CCRM)</td>
</tr>
<tr>
<td>Consistency</td>
<td>Dense, soft, wet</td>
</tr>
<tr>
<td>Taste and smell</td>
<td>Clean, sour milk, characteristic of soft cheeses without ripening</td>
</tr>
<tr>
<td>Color</td>
<td>White with a cream shade, uniform throughout the mass</td>
</tr>
<tr>
<td>Mass fraction of protein, %</td>
<td>18 ± 0.6</td>
</tr>
<tr>
<td>Moisture content, %</td>
<td>70 ± 0.4</td>
</tr>
<tr>
<td>Syneresis, ml</td>
<td>1.5 ± 0.05</td>
</tr>
<tr>
<td>The number of viable Lactobacillus helveticus H17:18 cells, CFU/cm²</td>
<td>3 x 10⁸</td>
</tr>
</tbody>
</table>
Table 2 – Changes in the quality indicators of the enriched curd cheese during storage

<table>
<thead>
<tr>
<th>Indicators</th>
<th>Shelf life, days</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Organoleptic indicators</td>
<td></td>
</tr>
<tr>
<td>Titratable acidity, °Т</td>
<td></td>
</tr>
<tr>
<td></td>
<td>105</td>
</tr>
<tr>
<td></td>
<td>120</td>
</tr>
<tr>
<td>Microbiological indicators</td>
<td></td>
</tr>
<tr>
<td>Number of L. helveticus Н<sub>183</sub> cells, CFU/g</td>
<td>4±10<sup>5</sup></td>
</tr>
<tr>
<td>Coliforms per 0.1 g of product</td>
<td>not detected</td>
</tr>
<tr>
<td>Yeast, mold, CFU/g</td>
<td>not detected</td>
</tr>
</tbody>
</table>

Table 3 - Qualitative characteristics of curd cheese enriched with CCRM and calcium

<table>
<thead>
<tr>
<th>Indicator Name</th>
<th>Indicator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appearance</td>
<td>Sealed product. The presence of a small amount of serum on the product surface is allowed. Shape — low cylinder, or packaging form, or another arbitrary form.</td>
</tr>
<tr>
<td>Taste and smell</td>
<td>Clean, sour milk, characteristic of soft cheeses without ripening, with a barely noticeable aroma of CCRM</td>
</tr>
<tr>
<td>Consistency</td>
<td>Dense, tender with the particles of CCRM</td>
</tr>
<tr>
<td>Color</td>
<td>From white to light cream, uniform throughout the mass</td>
</tr>
<tr>
<td>Fat content in dry matter, %, below</td>
<td>5</td>
</tr>
<tr>
<td>Moisture content, %, below</td>
<td>75</td>
</tr>
<tr>
<td>Mass fraction of milk protein, %, above</td>
<td>6.0</td>
</tr>
<tr>
<td>Mass fraction of calcium, mg/100 g, above</td>
<td>200</td>
</tr>
<tr>
<td>Mass fraction of modified CCRM, g/100 g, below</td>
<td>5</td>
</tr>
<tr>
<td>Mass fraction of salt (sodium chloride), %, below</td>
<td>2.0</td>
</tr>
<tr>
<td>Titratable acidity, °Т, below</td>
<td>110</td>
</tr>
<tr>
<td>Active acidity, pH units, above</td>
<td>4</td>
</tr>
<tr>
<td>The number of Lactobacillus helveticus Н<sub>183</sub> cells, CFU/cm<sup>2</sup></td>
<td>above 1±10<sup>6</sup></td>
</tr>
<tr>
<td>E. coli bacteria (coliforms)</td>
<td>Not allowed in 0.01 g</td>
</tr>
<tr>
<td>Pathogenic, including salmonella in 25 g</td>
<td>Not allowed</td>
</tr>
<tr>
<td>Staphylococcus S. aureus</td>
<td>Not allowed in 0.1 g</td>
</tr>
<tr>
<td>Yeast, mold, CFU/g, below</td>
<td>D-100, P-100</td>
</tr>
<tr>
<td>Listeria monocytogenes</td>
<td>Not allowed in 125 g (in five samples of 25 g each)</td>
</tr>
</tbody>
</table>

The results indicate that the organoleptic characteristics of the enriched curd cheese remain unchanged during the first 14 days of storage. However, a bitter taste was noted in the samples on the 16th day, which indicated proteolytic processes. Titrated acidity changed slightly during the shelf life under study.

Microbiological studies have shown that throughout the storage period, coliforms were absent in the product, yeast and mold were found in insignificant quantities only at the end of storage (however, their number corresponded to the regulated requirements for microbiological indicators of curd cheese [17]). As for lactic bacteria, it has been found that on the 18th day of storage there was a significant decrease in viable L. helveticus Н₁₈₃ cells (up to 106 CFU/g).

Thus, the recommended shelf life of the enriched curd cheese at a temperature of (6 ± 2) °C was 12-14 days. The short shelf life is explained by the “naturalness” of the cheese and sets apart this product from other brands of curd cheese, the shelf life of which can reach up to 4 months through the use of preservatives, stabilizers or heat treatment.

The experimental data obtained allowed to develop a technology for the production of the curd cheese enriched with CCRM and calcium. A feature of the new type of the curd cheese is the use of calcium-containing milk protein concentrate and biomodified collagen-containing rumen in its production. The technology provides for the preparation of calcium-containing milk protein concentrate and bioprocessed cattle rumen followed by the combination of ingredients, their mixing, salting, shaping, pressing and packaging. The lack of cheese mass ripening will reduce the process of cheese production and speed up the turnover of invested funds.

The qualitative characteristics of the curd cheese are presented in Table 3.

The data in Table 3 show that the curd cheese has good organoleptic characteristics, contains a significant amount of calcium, biomodified collagen and viable lactic bacteria cells. The intake of 100-150 g of the obtained product, containing about 200 mg of calcium once per day, can satisfy the need for calcium by 20% of the daily scale of an adult. The collagen present in the product will contribute to better absorption of calcium, as well as calcium retention in bone tissue and, consequently, an increase in bone mineral density [13, 14].

The production technology of the new curd cheese provides for the implementation of two necessary conditions - the joint presence of digestible calcium and collagen. Fulfillment of these conditions allows obtaining an innovative functional product for the treatment and prevention of osteoporosis and associated diseases.

CONCLUSION

The developed curd cheese technology allows obtaining a product with high biological value and good organoleptic characteristics. The curd cheese produced as per the developed technology is of greater importance in the dietetic nutrition, since it contains a significant amount of medicinal calcium, probiotic microorganisms and protein, being at the same time a low-fat product. Enrichment of cottage cheese with biomodified collagen-containing raw material allows obtaining a therapeutic and prophylactic product to prevent osteoporosis and fractures for all age groups of the population.

The practical value of the research is in the introduction of the developed technology at the milk and meat processing enterprises that are interested in the sustainable use of secondary raw materials and the production of safe, environmentally friendly foods with therapeutic and preventive properties.
REFERENCES

1. Toportsova, N.V., Benevolenskaya, L.I., Osteoporoz: sovremennyy
vzyglaad na problemu [Osteoporosis: a modern view on the problem],
The attending physician 2008, 04/08. Retrieved from
https://www.lvrach.ru/2008/04/5001283/.

2. Cosman, F., de Beur, S., LeBoff, M., de Beur, S.J., Tanner, B.,
Clinician’s Guide to Prevention and Treatment of Osteoporosis,

3. Kanis, J., Bianchi, G., Bilezkian, J., Towards a diagnostic and
therapeutic consensus in male osteoporosis, Osteoporosis
International 2011, 22 (11), 2799-2798.

4. Adler, R., El-Hajj Fuleihan, G., Bauer, D., Managing Osteoporosis in
Patients on Long-Term Bisphosphonate Treatment: Report of a Task
Force of the American Society for Bone and Mineral Research, J
Bone Miner Res. 2016, 31(1), 16-35.

5. Lukhov, Yu.V., Rol’ kollagensoderzhashchego pitaniya v prof
ilaktike [The role of collagen nutrition in the prevention and treatment of osteoporosis],

6. Dawson-Hughes, B., The role of calcium in bone growth and
preservation, in World Congress on Osteoporosis. Osteoarthritis and
tsukoskuletal Diseases (WCO-IOP-ESCEO 2017): Non-sponsored

7. Carmeliet, G., Dermauw, V., Bouillon, R., Vitamin D signaling in
calcium and bone homeostasis: A delicate balance, Best Practice &
Research Clinical Endocrinology & Metabolism. 2015, 29(4), 621-
631.

8. de Assumpção, D., Dias, M.R.M.G., de Azevedo Barros, M.B., Calcium
intake by adolescents: a population-based health survey, J Pediatr
(Rio J) 2016, 92(3), 251-259.

9. Wilczynski, C., Camacho, P., Calcium Use in the Management of
Osteoporosis: continuing Questions and Controversies, Current
Osteoporosis Reports 2014, 12(4), 396-402.

10. Balk, E., Adam, G., Langberg, V., Earley, A., Evidence to support a
global map of dietary calcium intake by country and subgroup, in
World Congress on Osteoporosis, Osteoarthritis and usculoskeletal
Diseases (WCO-IOP-ESCEO 2017): Non-sponsored Symposia

11. Taylor, E.N., Curhan, G.C., Dietary Calcium from Dairy and Non-dairy
Sources, and Risk of Symptomatic Kidney Stones, The Journal of
Urology 2013, 190(4), 1255-1259.

Folsom, A.R., Relation of calcium, vitamin D, and dairy food intake
to ischemic heart disease mortality among postmenopausal women,

13. Gukhov, Yu.V., Rol’ kollagensoderzhashchego pitanija v profilaktike
i lechenii osteoporoza [The role of collagen nutrition in the
prevention and treatment of osteoporosis], Ploklinika 2010, 2, 122-
123.

kollagena: sistematicheskij analiz molekul’nykh mehanizmov
vozdeystviya [Calcium and collagen biosynthesis: a systematic
analysis of molecular mechanisms of action], Russkij meditsinskij
zhurnal 2016, 15, 1009-1017.

technologii tvorochnyh syr’ v primeneniymikro- i ultrafiltratsii
[Innovative technologies of curd cheese using micro- and
ultrafiltration], in Modern achievements of biotechnology: materials
of the international scientific and practical conference, SKFU,
Minsk, 2014, pp. 96-98.

perspektivy proizvodstva myagkih syrov [Features and prospects
for the production of soft cheeses], Tekhnika i tekhnologiya
pishevykh produktov 2015, 4(39), 80-86.

17. COST 33480-2015 Card cheese: General technical conditions.

moolechno-bekvovykh konzentratov v kachestve syrya dlya
myagkih syrov [The use of milk protein concentrates as a raw
material for soft cheeses], Pererabotka moloka: tekhnologiya,
oborudovanie, produktsiya 2006, 3, 19.

19. Gudkov, A.V., Syrodelye: tekhnologicheskiye, biologicheskiye i
fiziko-khimicheskiye aspekty [Cheese making: technological,
biological and physico-chemical aspects], DeLi print, Moscow,
2007.

20. Shchekotova, A.V., Zambalova, N.A., Boyarintseva, I.V., Maradadina,
I.P., Khamagayeva, I.S., The study of the proteinolysis of milk proteins
obtained by thermal calcium coagulation, Journal of Pharmaceutical
Sciences and Research 2017, 9(12), 2599-2603.

E.M., Moolechno-bekvovy konzentrat, obogashchenny kal’tsiyem
[Milk protein concentrate, enriched with calcium], Polzunovskij
vestnik 2017, 1, 24-29.

22. Khairullin, M.F., O potrebitel’nykh predpochteniyakh vybory
myasnykh produktov [On consumer preferences when choosing meat
products], Mysyanaya industriya 2011, 12, 15-17.

23. Hashim, P., Mohd Razwan, M.S., Bakar, J., Mat Hashim, D.,
Collagen in food and beverage industries, International Food

24. Neklyudov, A.D., Ivankin, A.N., Collagen: production, properties
and application, GOY VPO MGUL, Moscow, 2007.

25. Zinina, O.V., Biotekhnologicheskaya obrabotka myagkogo syrya:
monografija [Biotechnological processing of raw meat: monograph],

biotekhnologicheskiye resheniya v myasnoy promyshlennosti
[Current biotechnological solutions in the meat industry], Molody
uchenyy 2013, 5, 102-105.

soyedinitel’nogo trakta pod vozdeystviem fermentnogo preparata
i startovykh kal’tur [Changes in the connective tissue under
the influence of the enzyme preparation and starter cultures], Vestnik
myasnoy skotovodstva 2011, 3(64), 78-83.

28. Bolgov, N.V., Perspektivnye vidy syrya’ v proizvodstve myasnych
produktov [Perspective types of raw materials in the production
of meat products], in Actual problems of intensive development of
livestock: a collection of scientific papers, BGSKhA, Gorki, 2015,
pp. 14-17.

29. Rebezov, M.B., Lukin, A.A., Sravnitel’naya otsenka vozdeystviya
fermentnykh preparatov razlichnogo proiskhozhdeniya na
kollagensoderzhashcheye syrye’ [Comparative assessment of
the impact of enzyme preparations of different origin on collagen-
containing raw materials], Technology and Commodity Science of
Innovative Food 2011, 5, 28-36.

30. Griffths, M.W., Telliez, A.M., Lactobacillus helveticus: the proteolytic
system, Frontiers in Microbiology 2013, 4 (30), 124-134.

Science 2010, 93(10), 4449-4453.

32. Vorobyev, V.I., Ispol’zovaniye rybnogo kollagena i produktov ego
gidrolizy [The use of fish collagen and its hydrolysis products,
Proceedings of the Kaliningrad State Technical University 2008, 13,
55-58.