Главная \ 3. Пробиотики \ Адгезия микроорганизмов (бактерий)

Адгезия бактерий

АДГЕЗИВНЫЕ СВОЙСТВА ПРОБИОТИЧЕСКИХ МИКРООРГАНИЗМОВ

 probiotikoterapiya.png

АДГЕЗИЯ МИКРООРГАНИЗМОВ: ОБЩИЕ СВЕДЕНИЯ

Адгезия микроорганизмов (microorganisms adhesion) [лат. adhaesio — прилипание; греч.mikros — маленький и лат. organismus — живое тело, живое существо] — способность микроорганизмов адсорбироваться на твердых поверхностях и чувствительных клетках с последующей колонизацией.

Одним из актуальных направлений современной микробиологии является изучение адгезивного процесса различных микроорганизмов. Известно, что способность микроорганизмов приживаться в ЖКТ, создавая  защитный барьер,  обусловлена их адгезивными  свойствами. Адгезия  - это межклеточное взаимодействие, выражающееся в прочном прикреплении клеток к субстрату. Следует отметить, что от адгезивных свойств во многом зависят стабильность и защитные свойства микрофлоры макроорганизма.

Адгезия к слизи, гликопротеинам и эпителиальным клеткам, а также колонизация в желудочно-кишечном тракте человека является основополагающими характеристиками микроорганизмов, обладающих пробиотическими свойствами.

Адгезия пробиотиков к кишечному эпителию и присутствие их в составе биопленки в покрывающем поверхность эпителия слое слизи обеспечивает их взаимодействие с иммунной системой кишечника. Они оказывают влияние на врожденный и адаптивный иммунный ответ на уровне эпителия, дендритных клеток, моноцитов/макрофагов, Т- и В-лимфоцитов, NK-клеток. Пробиотические микробы распознаются дендритными клетками, которые регулируют адаптивный Т-клеточный иммунный ответ. Под влиянием этих сигналов при встрече с неизвестным микробом может происходить стимуляция выработки провоспалительных цитокинов. Это мобилизует противоинфекционную защиту.

Очевидно, что разные штаммы пробиотиков способны по-разному восприниматься иммунной системой, более того, восприятие каждого из них может быть индивидуально, поскольку зависит от состояния иммунной системы и собственной микробиоты хозяина.

Большинство клинических и экспериментальных исследований свидетельствуют о том, что только определенные пробиотические штаммы оказывают стимулирующее воздействие на дендритные клетки кишечника с последующим образованием Tr-клеток и выработкой IL-10, то есть способствуют формированию иммунологической толерантности. Эта селективность объясняется способностью некоторых пробиотических штаммов связывать внутриклеточные молекулы адгезии 3-grabbing non-integrin (DC-SIGN), что облегчает индукцию дендритными клетками образования Tr-клеток. Изменение регулируемого дендритными клетками баланса адаптивного иммунитета под влиянием пробиотиков сопровождается снижением, с одной стороны, провоспалительного ответа (Th1, Th12), с другой - образования Th2 и синтеза IgE. 

Итак, адгезия бактерий представляет собой важнейший начальный этап взаимодействия с клетками макроорганизма.

Адгезивными свойствами характеризуются как представители нормальной микрофлоры, так и патогенные микроорганизмы. Благодаря адгезии резидентная микрофлора реализует свойство колонизационной резистентности, тем самым препятствуя заселению биотопов посторонними микроорганизмами и создавая защитный барьер от инфекционных агентов. Для патогенных бактерий адгезия является стартовым механизмом в формировании биопленок (пусковой механизм инфекционного процесса), в составе которых микробные клетки характеризуются повышенной устойчивостью к эффекторам иммунной системы, антибиотикам и дезинфектантам.

Иными словами, молекулярные механизмы адгезии универсальны как для патогенных форм, так и для представителей нормофлоры, поскольку в их основе лежит лиганд-рецепторное узнавание. Лиганды и рецепторы являются полимерами гликолипидной или гликопротеинной природы, которые состоят из множества копий уникальных субъединиц, что и определяет тропизм микроорганизмов к своим клеткам-мишеням.

Таким образом, одной из актуальных задач прикладной микробиологии является поиск препаратов, обеспечивающих изменение адгезивной активности бактерий с целью ее повышения для представителей нормальной микрофлоры или снижения для возбудителей инфекционных заболеваний.

АДГЕЗИНЫ

Белковые структуры, ответственные за связывание микроорганизма с клеткой, расположены на его поверхности и называются адгезинами. Адгезины разнообразны по строению и обусловливают высокую специфичность микробной адгезии, которая проявляется в способности одних микроорганизмов прикрепляться к клеткам эпителия дыхательных путей, других — кишечного тракта или мочеполовой системы и т. д.

Адгезины (adhesins) [лат. adhaesio - прилипание и -in(e) — суффикс, обозначающий «подобный»] - общее название специализированных поверхностных белков и клеточных структур, определяющих процесс адгезии. У микроорганизмов (бактерий) в адгезии принимают участие  пили или фимбрии, содержащие специфические адгезивные белки (интимины, YadA, Inv, Ail, pH6 антиген) и кислоты (липотейхоевые кислоты).

На поверхности стенки бактерии есть специальные реснички, или жгутики - фимбрии. Они вырабатывают специфический белок - адгезин. Как было отмечено выше, одной из задач прикладной микробиологии является повышение адгезивной активности для пробиотических бактерий и ее снижение для микробов - возбудителей инфекционных заболеваний, так как при многих кишечных инфекциях первой стадией инфекционного процесса является адгезия возбудителя к слизистой кишечника. Она облегчает конкуренцию с нормальной микрофлорой и заселение возбудителем слизистой. Поэтому важным фактором вирулентности (т.е. степени способности данного инфекционного агента (штамма микроорганизм или вируса) заражать данный организм являются адгезины - специфические поверхностные белки, обеспечивающие прикрепление бактерий к эпителию. 

На процесс адгезии микроорганизмов могут влиять физико-химические механизмы, связанные с гидрофобностью микробных клеток, суммой энергии притяжения и отталкивания. У грамотрицательных бактерий адгезия происходит за счет пилей I-го и общего типов. У грамположительных бактерий адгезины представляют собой белки и тейхоевые кислоты клеточной стенки. У других микроорганизмов эту функцию выполняют различные структуры клеточной системы: поверхностные белки, липополисахариды и др.

Адгезия микроорганизмов к поверхности различных небиологических материалов обусловлена как их физико-химическими свойствами, так и специфическими поверхностными рецепторами. Антиангезионная терапия, основанная на борьбе с адгезией микроорганизмов, заключается в использовании агентов, которые препятствуют процессу адгезии.

АДГЕЗИЯ ПРОПИОНОВОКИСЛЫХ БАКТЕРИЙ

Propionibacterium freudenreichii

краткое описание исследования

АДГЕЗИЯ МОЛОЧНЫХ ПРОПИОНОВОКИСЛЫХ БАКТЕРИЙ К КИШЕЧНОЙ ЭПИТЕЛИАЛЬНОЙ ТКАНИ InVitro и InVivo («В ПРОБИРКЕ» И «В ЕСТЕСТВЕННЫХ УСЛОВИЯХ»)

Источник: Gabriela Zárate; Vilma I Morata de Ambrosini; Adriana Perez Chaia; Silvia N González. Adhesion of Dairy Propionibacteria to Intestinal Epithelial Tissue In Vitro and In Vivo. Journal of Food Protection, Vol. 65, No. 3, 2002, Pages 534–539

Адгезия к слизистой оболочке кишечника является желательным свойством пробиотических микроорганизмов и связана со многими из их преимуществ для здоровья. В настоящем исследовании 24 штамма молочных пропионовокислых бактерий были оценены с учетом их гидрофобных характеристик, а также их способности к аутоагрегации и гемагглютинации, поскольку было показано, что эти признаки указывают на адгезию к другим микроорганизмам.

Прим. ред.: Аутоагрегация - способность формировать скопления (агрегаты); Гемагглютинация (от греч. háima — кровь и лат. agglutinatio — склеивание), склеивание и выпадение в осадок эритроцитов под воздействием бактерий, вирусов, токсинов и др., способных адсорбироваться на поверхности эритроцитов, а также гемагглютининов.

Шесть штаммов были дополнительно протестированы на их способность прикрепляться к эпителиальным клеткам подвздошной кишки in vitro и in vivo. Результаты исследования показали, что пропионовокислые бактерии обладают высокой гидрофильностью, и гемагглютинация и аутоагрегация являются свойствами, не часто встречающимися у этих микроорганизмов. Связь между характеристиками поверхности и адгезионной способностью не обнаружена, поскольку гемагглютинирующие, аутоаггрегирующие и неаутоаггрегирующие бактерии были способны прилипать к клеткам кишечника как in vitro, так и in vivo. Микроскопическое исследование показало, что аутоагрегирующие клетки адгезируются в кластеры, причем адгезия опосредуется лишь несколькими бактериями, тогда как гемагглютинирующие и неаутоагрегирующие штаммы адгезируются индивидуально или небольшими группами, контактируя с каждой эпителиальной клеткой со всей бактериальной поверхностью.

Оценка адгезии in vitro была хорошим показателем ассоциации in vivo пропионовокислых бактерий с кишечным эпителием.

Таким образом, метод in vitro, представленный здесь, должен быть ценным при скрининге обычно адгезивных свойств пропионибактерий для пробиотических целей. Адгезионная способность молочных пропионовокислых бактерий продлила бы их содержание в кишечнике и увеличила бы продолжительность их обеспечения полезных эффектов в организме хозяина, поддерживая потенциал пропионовокислых бактерий в разработке новых пробиотических продуктов.

Два отличных паттерна адгезии наблюдались при фазово-контрастной микроскопии и окрашивании по Граму: (I) аутоагрегация клеток, склеенных в большие скопления, с адгезией опосредуется только несколькими бактериями (рис. 1A и 1B), и (II) гемагглютинирующие и неаутоагрегирующие штаммы индивидуально или в небольших группах клеток, вступают в контакт с каждой эпителиальной клеткой кишечника всей бактериальной поверхностью (рис.2А и 2В).

аутоагрегация клеток, склеенных в большие скопления 

Рисунок 1. (A) Прилипание (адгезия) одного аутоагрегирующего штамма P. freudenreichii к клеткам эпителия кишечника (IEC - intestinal epithelial cells), наблюдаемое с помощью световой микроскопии после окрашивания по Граму. (B) Для всех автоагрегирующих штаммов прилипание к IEC опосредовано несколькими бактериями (стрелка).

Световые микрофотографии, иллюстрирующие адгезию

Рисунок 2. (А) неаутоагрегирующего штамма пропионовокислых бактерий P. acidipropionici CRL 1198 и (B) гемагглютинирующего штамма P. jensenii TL 246 к клеткам эпителия кишечника (IEC), наблюдаемую после окрашивания по Граму. Для этих штаммов, отдельные бактерии или небольшие группы бактерий соприкасались с каждой IEC всей своей поверхностью (стрелка).

В заключение стоит отметить, что, результаты, полученные в настоящем исследовании продемонстрировали сильную способность молочных (классических, не кожных) пропионовокислых бактерий придерживаться кишечных клеток. На основании кислотно-желчной устойчивости пропионовокислых бактерий (1), адгезионной способности, а также вызываемых положительных метаболических и иммуномодулирующих эффектов для хозяина (2, 3, 4), штаммы молочных пропионовокислых бактерий можно считать перспективными бактериями для разработки новых пробиотических молочных продуктов.

  1. Za´rate, G., A. Perez Chaia, S. Gonza´lez, and G. Oliver. 2000. Viability and b-galactosidase activity of dairy propionibacteria subjected to digestion by arti. cial gastric and intestinal  uids. J. Food Prot. 6:1214–1221.
  2. Morata de Ambrosini, V., S. Gonza´lez, G. Perdigo´n, A. P. de Ruiz Holgado, and G. Oliver. 1998. Immunostimulating activity of cell walls from lactic acid bacteria and related species. Food Agric. Immunol. 10:183–191.
  3. Pe´rez Chaia, A., M. E. Nader de Macias, and G. Oliver. 1995. Propionibacteria in the gut: effect on some metabolic activities of the host. Lait 75:435–445.
  4. Pe´rez Chaia, A., G. Za´rate, and G. Oliver. 1999. The probiotic properties of propionibacteria. Lait 79:175–185.

АДГЕЗИЯ БИФИДО- И ЛАКТОБАКТЕРИЙ

бифидобактерии и лактобактерии

на примере исследования ВИЧ-инфицированных детей

ВЛИЯНИЕ АДГЕЗИВНОЙ АКТИВНОСТИ БАКТЕРИЙ НА ИХ КОЛИЧЕСТВЕННОЕ СОДЕРЖАНИЕ В КИШЕЧНИКЕ У ВИЧ-ИНФИЦИРОВАННЫХ ДЕТЕЙ

Захарова Ю.В., Марковская А.А.
ГОУ ВПО «Кемеровская государственная медицинская академия», Кемерово

Проведен анализ результатов исследований адгезивной активности и количества кишечных микроорганизмов, полученных от 50 ВИЧ-инфицированных детей. Показано, что снижение уровня бифидобактерий и лактобацилл в кишечнике коррелировало с адгезивной активностью. Статистически значимой связи между адгезией и численностью условно-патогенных бактерий не установлено.

В настоящее время одним из приоритетных направлений в профилактической деятельности и в борьбе с ВИЧ-инфекцией в педиатрической практике являются увеличение продолжительности жизни инфицированных детей и минимизация риска развития вторичных бактериальных осложнений [4]. Самым крупным резервуаром условно-патогенных микроорганизмов является кишечник, поэтому сохранение стабильности микробиоценоза и его нормализация при нарушениях значительно снижает риск развития эндогенных инфекций. В связи с целесообразностью повышения эффективности у ВИЧ-инфицированных детей методов и средств коррекции кишечной микрофлоры возникает необходимость изучения некоторых механизмов развития микроэкологических нарушений.

Значение адгезивных характеристик бактерий для макроорганизма может рассматриваться с двух позиций. С одной стороны, адгезивный потенциал индигенной микрофлоры является одним из факторов реализации колонизационной резистентности слизистой кишечника и препятствия прикреплению к рецепторам слизистой патогенных микроорганизмов. С другой стороны, при развитии дисбиотических нарушений адгезивные свойства оппортунистической микрофлоры рассматривают в роли фактора патогенности, так как они позволяют микробам закрепиться на поверхности кожи, слизистых и колонизировать данный биотоп, достигая определенного популяционного уровня [1, 2]. В настоящее время уже показан характер изменений адгезивных характеристик микробов при развитии микроэкологических нарушений рото- и носоглотки, влагалища, предложены подходы к снижению адгезии у условно-патогенных бактерий. В то же время данные о биологических свойствах представителей микробиоты кишечника довольно немногочисленны, что, вероятно, обусловлено видовым разнообразием данного биотопа [5]. Особую значимость приобретает изучение влияния адгезивных свойств бактерий на их количество в кишечном биотопе у детей с иммунодефицитами, так как при ВИЧ-инфекции нередко собственная условно-патогенная микрофлора, достигая высоких концентраций, является этиологическим фактором развития инфекционных осложнений.

Цель исследования – оптимизация методов коррекции микроэкологических нарушений кишечника у ВИЧ-инфицированных детей.

Материал и методы исследования

Были изучены способность к адгезии и колонизационный уровень микросимбионтов кишечника у 50 ВИЧ-инфицированных детей в возрасте  0,2 года. Исследование кишечного микробиоценоза проводили с помощью количественного бактериологического метода. Для выделения облигатноанаэробных бактерий применяли анаэростаты (BBL,±2,0  США) и газогенерирующие пакеты (НПО «Новое дело», Санкт-Петербург). Идентификацию бактерий и грибов осуществляли с использованием коммерческих тест систем ANAERO-TEST 23 (Lachema, Чехия), ПБДС (Нижний Новгород), STREPTO-TEST 16 (Lachema, Чехия), AUXOCOLOR (BioRad, Франция), СИБ для энтеробактерий набор № 2 (НПО «Микроген», Нижний-Новгород). Интерпретацию результатов исследования кишечного микробиоценоза вели согласно региональным значениям нормы [3]. Было идентифицировано 269 культур микроорганизмов. Проведено 886 опытов по изучению биологических свойств участников симбиотических ассоциаций.

Адгезивные свойства микроорганизмов изучали согласно методике В.И. Брилиса. Для этого культуры выращивали в течение 24 часов на скошенном мясопептонном агаре сучетомтипадыхания. Взвесь микроорганизмов готовили на стерильном изотоническом растворе хлорида натрия в концентрации 109 КОЕ/мл. Клеточным субстратом служили формализированные эритроциты человека 0 (I) группы Rh (+), густотой 100 млн/мл. Эритроциты и взвесь микроорганизмов в равных объемах по 50 мкл соединяли в пробирках С в течение 1 часа, регулярно встряхивая смесь. После этого готовили мазок, высушивали, фиксировали 96 %-м спиртом 15 мин и окрашивали по Романовскому-Гимза. Изучение адгезии проводили под световым микроскопом, подсчет вели на 50 эритроцитах. Оценку результатов опыта вели по индексу адгезивности микроорганизма (ИАМ), который характеризует среднее количество микробных клеток на одном участвующем в адгезивном процессе эритроците. Микроорганизмы считали неадгезивными при ИАМ ≤ 1,75; низкоадгезивными – от 1,76 до 2,5; среднеадгезивными – от 2,51 до 4,0 и высокоадгезивными при ИАМ ≥ 4,0.

Для статистического анализа использовали пакет прикладных программ Statistica (версия 6.1 лицензионное соглашение ВХХR 006ВО92218 FAN 11). Статистическая обработка информации строилась с учетом характера распределения данных, которое не соответствовало нормальному. Характер распределения переменных величин в рассматриваемой совокупности определяли с помощью построения гистограмм. Для анализа связей между колонизационным уровнем бактерий и их адгезивной активностью применяли коэффициент корреляции Спирмена.

Результаты исследования и их обсуждение

Среди многочисленных функций, выполняемых индигенной микрофлорой, ведущей признается обеспечение колонизационной резистентности. Это придает индивидуальную и анатомическую стабильность микрофлоре, обеспечивает предотвращение заселения биотопа посторонними микроорганизмами и распространение нормофлоры за пределы их естественного места обитания [1, 2]. В связи с этим у доминантных микросимбионтов кишечника ВИЧ-инфицированных детей была изучена in vitro способность к адгезии, как основного механизма, позволяющего им формировать биопленку на слизистой. Установлено, что бифидобактерии характеризовались средней адгезивной активностью, так как среднее значение ИАМ в выборке составило 3,29 (от 1,19 до 7,48). Среди бифидобактерий только 16,25 % были отнесены к высокоадгезивным штаммам, тогда как большинство из них проявляли низкую (40,85 %) или среднюю (42,9 %) способность к адгезии. Возможно, это обусловлено изменением видовой структуры этих микросимбионтов, так как на долю Bifidobacterium bifidum, которые должны доминировать среди бифидофлоры, приходилось только 7,69 %. В структуре видового состава бифидобактерий наибольший удельный вес занимали B.breve (34,62 %). На долю B.dentium приходилось 30,76 %, B.longum – 29,92 %.

Лактобациллы, так же как и бифидобактерии, характеризовались среднеадгезивными особенностями. ИАМ в выборке составил 2,78 (от 2,01 до 6,5), 54,43 % лактобацилл были отнесены к микроорганизмам со средней адгезивной активностью, а 42,8 % – к низкоадгезивным. Только 2,77 % штаммов проявляли высокую способность к адгезии.

Установлена прямая корреляционная связь между ИАМ и интенсивностью колонизации слизистой кишечника бифидобактериями и лактобациллами (r = 0,56; p = 0,00). При этом преобладание среднеадгезивной активности у данных микроорганизмов обусловливает у ВИЧ-инфицированных детей невысокий популяционный уровень бифидобактерий (7,62 lg КОЕ/г) и лактобацилл (6,42 lg КОЕ/г), при региональных значениях нормы 9–10 lg КОЕ/г и 8–9 lg КОЕ/г соответственно. Дефицит анаэробной части доминантных микросимбионтов у детей с ВИЧ-инфекцией компенсируется избыточным ростом типичных кишечных палочек, количественный уровень которых составил 8,3 lg КОЕ/г при норме не более 8 lg КОЕ/г. Однако в популяции Escherichia coli lac+ преобладали низкоадгезивные штаммы, доля которых достигала 52,94 %. Средней адгезивной активностью обладали 29,41 % штаммов, на высокоадгезивные эшерихии приходилось только 17,65 % культур.

По данным литературы, к доминантным микросимбионтам помимо бифидобактерий, лактобацилл и типичных кишечных палочек относят Enterococcus faecalis [1, 2]. Интенсивность колонизации слизистой кишечника данными бактериями составила 6,46 lg КОЕ/г, что свидетельствует о недостаточном популяционном уровне энтерококков в биоценозе ВИЧ-инфицированных детей, так как в норме их количество должно достигать 7–8 lg КОЕ/г фекалий. При этом установлено, что связь между адгезивной активностью E.faecalis и интенсивностью колонизации слизистой отсутствовала (r = 0,14; p = 0,72), что позволяет говорить о наличии специфических механизмов поддержания определенного популяционного уровня у данных микроорганизмов.

Нарушение колонизационной резистентности слизистой кишечника у детей с ВИЧ-инфекцией сопровождалось формированием многокомпонентных ассоциаций, состоящих из дрожжевых грибов и условно- патогенных бактерий, представленных золотистыми стафилококками и клебсиеллами. При этом отмечали, что Staphylococcus aureus и Klebsiella spp, так же как и постоянные представители, характеризовались среднеадгезивной активностью – ИАМ составил 3,7 (от 0,1 до 10,42) и 3,05 (от 0,9 до 6,59) соответственно. Среди стафилококков 30,6 % штаммов были охарактеризованы как высокоадгезивные, 44,4 % культур являлись среднеадгезивными и только 19,4 % проявляли низкую адгезивную активность. Высокоадгезивные клебсиеллы были выделены в 13,6 % случаев, в большинстве случаев данные микроорганизмы проявляли низкую и среднюю способность к адгезии (31,8 и 36,4 % соответственно), а 18,2 % были неадгезивными. При изучении количественного уровня условно-патогенной микрофлоры было установлено, что содержание золотистых стафилококков в кишечнике детей с ВИЧ-инфекцией в среднем составило 3,21 lg КОЕ/г (от 2 до 6 lg), несмотря на высокую долю в популяции штаммов с высокой и средней способностью к адгезии. В то же время содержание клебсиелл, которые были неадгезивными или низкоадгезивными, достигало 6,94 lg КОЕ/г (от 4 до 9 lg). Связи между адгезивной активностью условно-патогенных бактерий и их количественным уровнем выявлено не было (r = 0,14; p = 0,47), что дает право предполагать о наличии иных, чем у доминантной микрофлоры механизмов формирования популяционного уровня. Таким образом, полученные результаты раскрывают дальнейшие перспективы исследований, направленных на изучение механизмов интерференции (вытеснения) условно-патогенной микрофлорой доминантных микросимбионтов.

Выводы

1. Популяционный уровень бифидобактерий и лактобацилл в кишечном микробиоценозе ВИЧ-инфицированных детей прямо зависит от адгезивных характеристик данных бактерий (r = 0,56; p = 0,00), тогда как связи между адгезивной активностью и количеством условно-патогенных микро- организмов выявлено не было (r = 0,14; p = 0,47).

2. Восстановление колонизационной резистентности кишечника у ВИЧ-инфицированных детей целесообразно проводить на основе использования высокоадгезивных штаммов бифидобактерий и лактобацилл. В то же время модуляция адгезивных свойств условно-патогенной микрофлоры не позволит повлиять на их количественное содержание в кишечнике.

Работа выполнена на средства Гранта Президента РФ МК-971.2010.7

Список литературы

  1. Бондаренко В.М., Рябиченко Е.В. Роль дисфункции кишечного барьера в поддержании хронического воспалительного процесса различной локализации // Журн. микробиологии, эпидемиологии и иммунобиологии. – 2010. – № 1. – С. 92–100.
  2. Бухарин О.В. Инфекция – модельная система ассоциативного симбиоза // Журн. микробиологии, эпидемиологии и иммунобиологии. – 2009. – № 1. – С. 83–86.
  3. Возрастные особенности микробиоценоза кишечника у жителей г. Кемерово / Л.А. Леванова, В.А. Алешкин, А.А. Воробьев и др. // Журн. микробиологии, эпидемиологии и иммунобиологии. – 2001. – № 3. – С. 72–75.
  4. Онищенко Г.Г. Санитарно-эпидемиологическая обстановка в Российской Федерации. Основные проблемы и приоритетные направления профилактической деятельности на современном этапе // Вестник РАМН. – 2009. – № 7. – С. 30–36.
  5. Шитов Л.Н., Романов В.А. Влияние иммунодепрессантов на популяционный уровень и адгезивные свойства условно-патогенных бактерий толстой кишки белых мышей // Журн. микробиологии, эпидемиологии и иммунобиологии. – 2009. – № 6. – С. 12–16.

КОГЕЗИЯ (АГРЕГАЦИЯ КЛЕТОК)

дополнительная информация

Не стоит путать адгезию и когезию. Рассмотрим кратко свойства когезии на примере взаимордействия бифиобактерий с пищевыми волокнами.

К механизмам, гарантирующим стабильность микробного консорциума, кроме адгезии относится также когезия (агрегация клеток). В литературных источниках недостаточно сведений о межклеточных контактах микроорганизмов, отражающих закономерности развития микробных популяций как саморегулирующих многоклеточных систем. Подробнее по данной теме см.: Влияние пребиотиков на процессы адгезии и когезии бифидобактерий

овсяная мука
Рисунок 1. овсяная мука 1%
ячменная мука
Рис. 2 ячменная мука 1,5%
жмыха ядра кедрового ореха
Рис. 3. жмых ядра кедрового ореха 2%

Микрокартина бифидобактерий В. longum ДК-100 (увеличение 1х1000)

изображения увеличиваются

Из представленных выше рисунков 1 и 2 видно, что внесение пищевых волокон приводит к агрегации клеток бифидобактерий и формированию микроколоний. Согласно современным данным, механизм позитивного эффекта пищевых волокон, растворимых β-глюканов овса и ячменя и нерастворимых высокомолекулярных полисахаридов, заключается в создании дополнительной площади для фиксации бифидобактерий и биотрансформации пищевых волокон с образованием доступных источников углерода и энергии. Из литературных данных известно, что адсорбция и иммобилизация на биоволокнах защищают клетки бифидобактерий при стрессовых воздействиях.

Если некоторые авторы, решающее значение в объединении бактериальных клеток отводят гликокаликсу, то другие склонны рассматривать поверхностные слизеподобные слои, их окружающие, как адсорбируемый ими из культуральной жидкости материал. По мнению специалистов ВСГУТУ экзогенные слизи пребиотиков, содержащиеся в культуральной жидкости, способствуют процессу когезии бифидобактерий.

Полученные результаты подтверждаются данными литературы, согласно которым микроорганизмы рода Bifidum способны осуществлять гидролиз декстрана по α-1-6-глюкозидным связям с синтезом высших изомальтодекстринов, а также утилизировать целлобиозы и целлюлозы.

Как свидетельствуют данные рисунка 3, культивирование бифидобактерий в питательной среде с внесением жмыха ядра кедрового ореха, где содержится высокое количество нерастворимых пищевых волокон, приводит к интенсификации межклеточных связей и формированию обширных микроколоний. Эффект образования многоклеточных систем обеспечивает адаптационную, физиологическую устойчивость клеток к конкретной экологической нише, что, возможно, является реакцией на воздействие отрицательных экзо− и эндогенных факторов.

Будьте здоровы!

 

ССЫЛКИ К РАЗДЕЛУ О ПРЕПАРАТАХ ПРОБИОТИКАХ

  1. ПРОБИОТИКИ
  2. ДОМАШНИЕ ЗАКВАСКИ
  3. БИФИКАРДИО
  4. КОНЦЕНТРАТ БИФИДОБАКТЕРИЙ ЖИДКИЙ
  5. ПРОПИОНИКС
  6. ЙОДПРОПИОНИКС
  7. СЕЛЕНПРОПИОНИКС
  8. БИФИДОБАКТЕРИИ
  9. ПРОПИОНОВОКИСЛЫЕ БАКТЕРИИ
  10. ПРОБИОТИКИ И ПРЕБИОТИКИ
  11. СИНБИОТИКИ
  12. АНТИОКСИДАНТНЫЕ СВОЙСТВА
  13. АНТИОКСИДАНТНЫЕ ФЕРМЕНТЫ
  14. АНТИМУТАГЕННАЯ АКТИВНОСТЬ
  15. МИКРОФЛОРА КИШЕЧНОГО ТРАКТА
  16. МИКРОФЛОРА И ФУНКЦИИ МОЗГА
  17. ПРОБИОТИКИ И ХОЛЕСТЕРИН
  18. ПРОБИОТИКИ ПРОТИВ ОЖИРЕНИЯ
  19. МИКРОФЛОРА И САХАРНЫЙ ДИАБЕТ
  20. ПРОБИОТИКИ и ИММУНИТЕТ
  21. ПРОБИОТИКИ и ГРУДНЫЕ ДЕТИ
  22. ДИСБАКТЕРИОЗ
  23. МИКРОЭЛЕМЕНТНЫЙ СОСТАВ
  24. ПРОБИОТИКИ С ПНЖК
  25. ВИТАМИННЫЙ СИНТЕЗ
  26. АМИНОКИСЛОТНЫЙ СИНТЕЗ
  27. АНТИМИКРОБНЫЕ СВОЙСТВА
  28. СИНТЕЗ ЛЕТУЧИХ ЖИРНЫХ КИСЛОТ
  29. СИНТЕЗ БАКТЕРИОЦИНОВ
  30. ФУНКЦИОНАЛЬНОЕ ПИТАНИЕ
  31. АЛИМЕНТАРНЫЕ ЗАБОЛЕВАНИЯ
  32. ПРОБИОТИКИ ДЛЯ СПОРТСМЕНОВ
  33. ПРОИЗВОДСТВО ПРОБИОТИКОВ
  34. ЗАКВАСКИ ДЛЯ ПИЩЕВОЙ ПРОМЫШЛЕННОСТИ
  35. НОВОСТИ